
Linux Commands and Bash Scripting

This is a hands-on training on Linux commands and Bash scripting, with lots of step-

by-step examples, and with concise (not very detailed) explanations. To get the

maximum benefit from it, you should try these commands and examples yourself,

rather than reading or just skimming through.

INFO

These examples are mostly based on the wonderful book The Linux Command

Line by William Shotts. So, for more detailed and complete explanations, and

for a deeper understanding, I recommend downloading and reading the PDF

version of this book. I cannot recommend it highly enough.

You need a Linux terminal to try these examples. I would recommend using a virtual

machine or a container with Ubuntu or Debian.

CAUTION

If you already use Linux on your personal machine (laptop), it is still NOT

recommended to try the examples directly on it. They are are not harmful, but

a mistyping or some other mistake might have unexpected results.

TIP

There are lots of ways for running a virtual machine. Using a podman container

is one of the simplest ones.

INFO

These lessons have been used previously on this online course. The video

recordings for the scripting part are published on YouTube:

INFO

https://linux-cli.fs.al/
https://linuxcommand.org/tlcl.php
https://linux-cli.fs.al/appendix/podman-container
https://ocw.fs.al/course/view.php?id=23#section-2
https://www.youtube.com/playlist?list=PLqq78M1GnIlHiOeYDUIuXYSAOaDhgemSa

There is also an italian version of these lessons, translated by Claudio Cavalli.

INFO

A PDF version of these lessons is also available for download.

https://fuss.bz.it/utility/doc/bash/bash/
https://linux-cli.fs.al/pdf/linux-commands-and-bash-scripting.pdf
https://linux-cli.fs.al/pdf/linux-commands-and-bash-scripting.pdf

Linux Commands Lesson 1 Intro

Lesson 1: Intro

In this lesson we will get started with some simple commands and their options, will

learn how to navigate and explore the system, etc.:

Trying some simple commands (date , cal , df , free , exit).

Navigation (pwd , ls , cd).

Relative and absolute filenames.

Exploring the system (ls , file , less).

Long directory listing.

Directory structure on Linux systems.

DOWNLOAD INTRO.CAST

DOWNLOAD LESSON01/INTRO.CAST

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson01
https://linux-cli.fs.al/assets/files/intro-e320fb45b00a0f7769ccbee8a7bbc7a6.cast
https://linux-cli.fs.al/assets/files/intro-d4f50a50d60cfce915346d9731062f9f.cast

Linux Commands Lesson 1 1. First commands

1. First commands

1. Display the current date and time:

2. Display a calendar of the current month:

For another month:

3. Check how much free space there is on the disk drives:

4. Display the amount of the free memory:

date

date +%Y-%m-%d

cal

cal 5 2020

df

df -h

df -h /

free

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson01

DOWNLOAD LESSON01/PART1.CAST

free -h

https://linux-cli.fs.al/assets/files/part1-e912fb4fa54e840de57015382e0869a9.cast

Linux Commands Lesson 1 2. Navigation

2. Navigation

The command cd (change directory) is used to move from one directory to another.

The command pwd (print working directory) shows the current location. The

command ls (list) shows the content of the current working directory.

1. Display the current working directory with pwd (print working directory):

2. List the contents of a directory:

3. Change the current working directory:

pwd

ls /

ls /usr

ls -l /usr

cd /usr

pwd

ls

cd /usr/bin

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson01

The path /usr/bin is called absolute, since it shows the full path, starting from

the root (/).

4. Go to the directory one level up:

Two dots (..) represent the parent of the current directory.

By the way, a single dot (.) represents the current directory:

5. Use a relative path:

The directory bin is relative to the current one (in this case /usr).

6. Go to the previous current directory:

pwd

cd ..

pwd

cd .

pwd

cd bin

pwd

cd /var/log

7. Go to the home directory:

The tilde (~) represents the home directory of the current user.

DOWNLOAD LESSON01/PART2.CAST

cd -

cd -

cd

cd ~

https://linux-cli.fs.al/assets/files/part2-9d4627f3565fb1b1a09a4072e7395f00.cast

Linux Commands Lesson 1 3. Command options

3. Command options

Let's see some options of the command ls .

1. List only some files:

We are listing only those files that start with b and those that start with c , on

the directory /bin .

2. Long listing:

The option -l stands for long listing, where each file is printed on its own line,

with more details.

3. Long and short options.

Notice that the middle column shows the size of the file (in bytes). To make the

size more readable we can use the option --human-readable :

Instead of this long option we can use its short equivalent -h , which is more

convenient to write:

ls /bin

ls /bin/b* /bin/c*

ls -l /bin/b* /bin/c*

ls -l --human-readable /bin/b* /bin/c*

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson01

Tip: In order to modify the previous command, you can use the up-arrow key on

the keyboard to display the previous command, use left-arrow and right-arrow

keys to locate the cursor, modify the command, and then press [Enter].

4. Merging short options.

We can also merge the short options like this:

By default files are listed alphabetically, but we can sort them by modification

time, using the option -t :

5. With the option --reverse or -r we can reverse the order of display:

Usually the options have a long version (like --reverse or --human-readable) and a

short one (like -r or -h). But not all of them. For example the options -l or -t

don't have a long version.

ls -l -h /bin/b* /bin/c*

ls -lh /bin/b* /bin/c*

ls -lht /bin/b* /bin/c*

ls -lt --reverse /bin/b* /bin/c*

ls -lh --reverse /bin/b* /bin/c*

ls -ltr /bin/b* /bin/c*

ls -lhr /bin/b* /bin/c*

It seems like the short options are more convenient when writing commands. In your

opinion, why do we have long options as well? Why they might be useful?

DOWNLOAD LESSON01/PART3.CAST

https://linux-cli.fs.al/assets/files/part3-01dd887e91a9bf9c1b5a0db2624e9d37.cast

Linux Commands Lesson 1 4. Exploring the system

4. Exploring the system

To explore the system we use these steps:

1. Use cd to go to a directory.

2. List the directory contents with ls -l .

3. If you see an interesting file, determine its contents with the command file .

4. If it looks like it might be text, try viewing it with less .

Let's try some of these:

1. Go to /bin and list its content:

2. Check the type of some files and their contents:

The file bzless is a symbolic link, a kind of shortcut, or alias, or a reference to

another file. There are also hard links which we will see later.

cd /bin

ls -l

ls -l b*

ls -l bzless

file bzless

ls -l bzmore

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson01

The file bzmore is a shell script and actually a text file, so we can read its

content:

Press [Space] a couple of times, and then quit with q .

Shell scripts are like programs and contain Linux commands.

The command less displays the contents of a text file page-by-page.

Note: The command less is an improved replacement of an earlier Unix

command that was called more . So, sometimes it is said that: less is more . Or:

less is more or less more .

3. Let's check another file:

The file bash is an executable program, and a binary (non-text) file. Let's try to

read its content:

Exit with q .

As you see, text files have a content that is readable by humans, non-text files

(or binary files) have a content that is not readable by humans (but it may be

read and interpreted by some programs).

file bzmore

less bzmore

ls -lh bash

file bash

less bash

4. Let's check /etc :

It is plain text. Let's check its content:

This file contains the accounts of the system.

The files on /etc are usually configuration files, and almost all of them are text

files (readable and writable by humans).

5. In contrast, the files on /bin are programs or commands and they are mostly

binary files or shell scripts. The same goes for /sbin , /usr/bin , /usr/sbin ,

/usr/local/bin , etc.

file /etc

ls -l /etc/passwd

file /etc/passwd

less /etc/passwd

ls /sbin

ls /usr/bin

ls /usr/sbin

ls /usr/local/bin

6. Some other important directories are:

Contains the Linux kernel, initial RAM disk image, the boot loader, etc.

Contains device nodes.

Contains home directories of the users.

Contains shared libraries.

ls /boot

ls /boot/grub

ls /dev

file /dev/tty

file /dev/pts/1

ls /home

ls /lib

ls /usr/lib

ls /proc

This is a special directory that exposes the settings and the state of the kernel

itself.

Contains data that are likely to change frequently (like log files).

Temporary data which might be erased on each reboot.

DOWNLOAD LESSON01/PART4.CAST

less /proc/cpuinfo

ls /var

ls /var/log

ls /tmp

https://linux-cli.fs.al/assets/files/part4-75e9ae668c873a1594c8c91a485bfeea.cast

📄️ Intro

- Manipulating files and directories (cp, mv, mkdir, rm,

📄️ 1. Manipulating files and directories

To work with files and directories we can use these commands:

📄️ 2. Some commands about commands

1. The command type displays a command's type:

📄️ 3. Command history

1. The command history can be used to display the history of the

📄️ 4. Keyboard tricks

In the previous section we saw that we can search the command history

https://linux-cli.fs.al/lesson02/intro
https://linux-cli.fs.al/lesson02/part1
https://linux-cli.fs.al/lesson02/part2
https://linux-cli.fs.al/lesson02/part3
https://linux-cli.fs.al/lesson02/part4

Linux Commands Lesson 2 Intro

Intro

Manipulating files and directories (cp , mv , mkdir , rm , ln). Wildcards. Symbolic

and hard links.

Working with commands (type , which , help , man , apropos , info , whatis ,

alias).

Command history and keyboard tricks (clear , history , Ctrl+a , Ctrl+e ,

Ctrl+r).

DOWNLOAD LESSON02/INTRO.CAST

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson02
https://linux-cli.fs.al/assets/files/intro-d5e40ed2b20ba660d1c5d93bd3e3e55b.cast

Linux Commands Lesson 2 1. Manipulating files and directories

1. Manipulating files and directories

To work with files and directories we can use these commands:

cp - Copy files and directories

mv - Move/rename files and directories

mkdir - Create directories

rm - Remove files and directories

ln - Create hard and symbolic links

Let's use them in some examples.

1. Creating directories:

2. Copying files:

cd

mkdir playground

cd playground

mkdir dir1 dir2

ls -l

cp /etc/passwd .

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson02

Notice that . is the current working directory.

The option -v makes the command verbose.

The option -i makes the command interactive. This means that it asks you

first, before doing any potentially destructive actions. Press y or n to continue.

3. Moving and renaming files:

ls -l

cp -v /etc/passwd .

cp -i /etc/passwd .

mv passwd fun

ls -l

mv fun dir1

ls -l

ls -l dir1

mv dir1/fun dir2

4. Creating hard links:

ls -l dir1

ls -l dir2

mv dir2/fun .

tree

mv fun dir1

mv dir1 dir2

tree

ls -l dir2/dir1

mv dir2/dir1 .

mv dir1/fun .

tree

ln fun fun-hard

Notice that the second field in the listing of fun and fun-hard is 4 , which

shows the number of the links for the file. Hard links are like different names for

the same file content.

To make sure that all four of them are the same file, let's try the option -i :

You may notice that the number on the first column is the same for all the files.

This is called the inode number of a file, and can be thought as the address

where the file is located. Since it is the same for all the files, this shows that

they are actually the same file.

5. Creating symbolic links:

Symbolic links are a special type of file that contains a text pointer to the target

file or directory. They were created to overcome two disadvantages of hard

links:

i. hard links cannot span physical devices

ii. hard links cannot reference directories, only files

ln fun dir1/fun-hard

ln fun dir2/fun-hard

ls -lR

ls -lRi

ln -s fun fun-sym

ls -l

These two examples might seem a bit difficult to understand what is going on.

But remember that when we create a symbolic link, we are creating a text

description of where the target file is, relative to the symbolic link.

We can also use absolute file names when creating symbolic links:

However, in most cases, using relative pathnames is more desirable, because it

allows a directory tree containing symbolic links and their referenced files to be

renamed and/or moved without breaking the links.

In addition to regular files, symbolic links can also reference directories:

6. Removing files and directories.

Let's clean up the playground a little bit. First let's delete one of the hard links:

ln -s ../fun dir1/fun-sym

ln -s ../fun dir2/fun-sym

tree

ln -sf /home/user1/playground/fun dir1/fun-sym

ls -l dir1/

ln -s dir1 dir1-sym

ls -l

Notice that the link count for fun is reduced from 4 to 3 (as indicated in the

second field of the directory listing).

Press y

The symbolic link now is broken.

When we remove a symbolic link the target is not touched.

rm fun-hard

ls -l

rm -i fun

ls -l

less fun-sym

rm fun-sym dir1-sym

ls -l

rm -r dir1/

cd ..

DOWNLOAD LESSON02/PART1.CAST

rm -rf playground/

https://linux-cli.fs.al/assets/files/part1-1d440ef17ae8add15b5a87d7c021362b.cast

Linux Commands Lesson 2 2. Some commands about commands

2. Some commands about commands

1. The command type displays a command's type:

The command cp is an executable program located on /usr/bin/cp .

2. The command which displays the location of an executable:

The command cd is not an executable but a shell builtin command.

3. The command help displays a help page for the shell builtin commands:

type type

type ls

type cp

which ls

which cd

type cd

help cd

help mkdir

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson02

The command mkdir is not a shell builtin.

4. The option --help displays usage information:

5. The command man displays the manual page of a program:

Manual pages are organized into different sections, where section 1 for example

is about user commands, and section 5 is about file formats. So, these two

commands will display different manual pages:

6. The command info is another way to display manual pages:

7. The command apropos displays appropriate commands:

This is the same as:

mkdir --help

man ls

man passwd

man 5 passwd

info coreutils

info passwd

apropos passwd

It makes a simple search on man pages for the term "passwd".

8. The command whatis displays a very brief description of a command:

9. The command alias is used to create new commands.

man -k passwd

whatis ls

alias --help

alias

type alias

type ls

cd /usr; ls; cd -

type foo

alias foo="cd /usr; ls; cd -"

type foo

DOWNLOAD LESSON02/PART2.CAST

foo

unalias foo

type foo

https://linux-cli.fs.al/assets/files/part2-7e6fa887ea357a76c10d7c2f0973ae7d.cast

Linux Commands Lesson 2 3. Command history

3. Command history

1. The command history can be used to display the history of the typed

commands:

2. The history is kept of in the file ~/.bash_history :

Notice that the latest commands are not there. Bash maintains the list of

commands internally in memory while it's running, and writes it to the history

file on exit. Let's tell Bash to append the command list to the history file now:

history

history | less

history | tail

history | tail -n 20

history | grep man

echo $HISTFILE

ls $HISTFILE

tail $HISTFILE

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson02

3. We can re-run a previous command like this:

Rerun the command which has the given number.

Rerun the last command that starts with ls .

Rerun the last command that contains passwd .

4. We can recall the previous commands also by pressing the up-arrow multiple

times.

5. However the most useful way to rerun previous commands is searching

interactively, with keyboard shortcuts.

For example typing "Ctrl-r" will start a reverse incremental search. It is "reverse"

because it searches backwards in the history list, starting from the last

command. While we start typing the search text it will display the last command

that matches it. If we are happy with the search result we can just press enter to

rerun it, or we can use the left and right arrows to edit it first and then press

history -a

tail $HISTFILE

!67

!ls

!?passwd

history | grep passwd

[Enter] to run it. Otherwise we can keep pressing "Ctrl-r" to get the next

matching command, and so on.

Let's try it:

i. Press "Ctrl-r".

ii. Type "pass".

iii. Press "Ctrl-r" again.

iv. Press "Ctrl-r" again.

v. Press "Enter".

DOWNLOAD LESSON02/PART3.CAST

https://linux-cli.fs.al/assets/files/part3-0ed88dae5c19a263afaf1f7cdfb047b4.cast

Linux Commands Lesson 2 4. Keyboard tricks

4. Keyboard tricks

In the previous section we saw that we can search the command history and recall

one of the previous commands by pressing "Ctrl-r". We can also use the up-arrow

and down-arrow to select one of the previous commands, and left-arrow and right-

arrow to move the cursor while editing a command.

Some other key combinations that can be useful while editing commands are:

"Ctrl-a" -- Move cursor to the beginning of the line.

"Ctrl-e" -- Move cursor to the end of the line.

"Alt-f" -- Move cursor forward one word.

"Alt-b" -- Move cursor backward one word.

"Ctrl-l" -- Clear the screen and move the cursor to the top. Same as the clear

command.

"Ctrl-k" -- Kill (cut) text from the cursor location to the end of the line.

"Ctrl-u" -- Cut text from the cursor location to the beginning of the line.

"Ctrl-d" -- Delete the character at the cursor location.

"Alt-d" -- Cut text from the cursor location to the end of the current word.

"Ctrl-y" -- Yank (paste) text from the kill-ring and insert it at the cursor location.

Write a command and try to use some of these key combinations.

The shell can also help us with completion, if we press the TAB key while typing a

command. For example try:

echo /etc/n*

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson02

Now type cat /etc/n (without pressing Enter) and press TAB. Press TAB a

second time. The shell shows us possible completions of the command that we

are typing.

Continue to add additional letters, and pressing TAB (maybe twice or more) after

each letter. When the completion is unique, press Enter.

DOWNLOAD LESSON02/PART4.CAST

https://linux-cli.fs.al/assets/files/part4-c599e61043254b812cf4c4ffeefe8b2e.cast

📄️ Intro

Linux, like UNIX, is a multi-tasking and a multi-user system. This

📄️ 1. Ownership and permissions

In the Unix security model, a user may own files and

📄️ 2. Adding user accounts

1. Let's create a new user:

📄️ 3. Example with permissions

In this example we will set up a shared directory between the users

📄️ 4. Processes

A process is a program that is being executed by the system. Linux

https://linux-cli.fs.al/lesson03/intro
https://linux-cli.fs.al/lesson03/part1
https://linux-cli.fs.al/lesson03/part2
https://linux-cli.fs.al/lesson03/part3
https://linux-cli.fs.al/lesson03/part4

Linux Commands Lesson 3 Intro

Intro

Linux, like UNIX, is a multi-tasking and a multi-user system. This means that the

system can run multiple programs at the same time, and it can be used by more

than one user at the same time. One of the challenges of such a system is that it

needs to identify users and protect them from each-other.

Users and groups, permissions:

useradd , passwd , id , chmod , umask , su , sudo , chown , chgrp

Processes and signals:

ps , pstree , top , jobs , bg , fg , kill , killall , shutdown

INFO

The commands in the first and second parts need to be given as user root .

Usually you can switch to this user with the command:

DOWNLOAD LESSON03/INTRO.CAST

sudo su

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson03
https://linux-cli.fs.al/assets/files/intro-d1c86be9c7c45d9f3d4740f046d9f1b4.cast

Linux Commands Lesson 3 1. Ownership and permissions

1. Ownership and permissions

In the Unix security model, a user may own files and directories. When a user owns

a file or a directory, he has control over its access (he decides who can access it). To

facilitate granting permissions, users may belong to one or more groups. If the

owner of a file grants permissions to a group, then all the members of the group

have access to this file. Besides granting access to a group, an owner may grant

some access rights to everybody, which in Unix terms is referred to as others.

1. When you use the command ls -l , the first column of the output (the one

which has some dashes) shows the attributes of the file.

The first char of attributes shows the file type. If this char is a - it is a regular

file, d is for a directory, l for a symbolic link, c for a character special file (for

example a keyboard or network card), and d for block special file (like a hard

drive or RAM).

The remaining 9 characters show the access rights for the file's owner, the file's

group, and the rest of the users. They are rwx for the user, rwx for the group,

and rwx for the others, where r stands for reading (viewing the content of the

file), w is for writing (modifying the content of the file), and x is for executing

(running the file like a program or a script). If there is a minus (or a dash)

instead of r , w or x , it means that the corresponding right is missing.

For a directory, the x attribute allows a directory to be entered (e.g. cd

directory). The r attribute allows a directory's content to be listed (with ls),

but only if the x attribute is also set. And the w attribute allows files within a

directory to be created, deleted, and renamed, if the x attribute is also set.

> foo.txt

ls -l foo.txt

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson03

2. We can change the permissions of a file or directory with chmod . Only the owner

and the superuser can change the permissions of a file or directory.

In this case we are using octal notation for telling chmod what permissions to

set. For example 7 (111) is for rwx , 6 (110) is for rw- , 5 (101) is for r-x , 4

(100) is for r-- , and 0 is for --- (no permissions).

We can also use symbolic notation with chmod , where u (user) represents the

owner, g represents the group, and o (others) represents the world. There is

also the symbol a (all) which is a combination of u, g and o.

Add the execute permission to the user:

Remove the execute permission from the user:

Add execute to user. Group and others should have only read and execute:

ls -l foo.txt

chmod 600 foo.txt

ls -l foo.txt

chmod u+x foo.txt

ls -l foo.txt

chmod u-x foo.txt

ls -l foo.txt

Remove the execute permission from all:

3. The umask command controls the default permissions given to a file when it is

created:

This octal notation tells which bits will be masked (removed) from the attributes

of a file:

The reason that the others don't have a w permission is because of the mask.

Remember that the number 2 in octal is written as 010 , so the permissions

expressed by it are -w- . This means that the w permission for the others will be

removed from the attributes.

chmod u+x,go=rx foo.txt

ls -l foo.txt

chmod ugo-x foo.txt

chmod a-x foo.txt

chmod -x foo.txt

ls -l foo.txt

umask

rm -f foo.txt

> foo.txt

ls -l foo.txt

Let's change the mask and try again:

Restore the normal umask:

DOWNLOAD LESSON03/PART1.CAST

rm foo.txt

umask 0000

umask

> foo.txt

ls -l foo.txt

umask 0022

umask

https://linux-cli.fs.al/assets/files/part1-4f8b47ac0c969e6132a21fe1f52ef610.cast

Linux Commands Lesson 3 2. Adding user accounts

2. Adding user accounts

1. Let's create a new user:

Only the superuser can create new accounts, so let's use sudo :

The option -m tells it to create a home directory for the user, which is by default

located at /home/ , and the option -s tells it what shell to use for this user.

Users normally cannot access the content of each other. Superuser can access

everything.

We should also set a password for test1 :

useradd --help

useradd -m -s /bin/bash test1

sudo useradd -m -s /bin/bash test1

ls /home/

ls -al /home/test1/

sudo ls -al /home/test1/

sudo passwd test1

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson03

2. Let's switch to this user and try some commands:

su means: 'switch user'

When a user account is created, the system assigns it a number called user ID

or uid, which is mapped to a username for the sake of humans. Each user is also

assigned a primary group ID (or gid) and may belong to additional groups.

Back to the first user.

3. User accounts are defined in /etc/passwd and groups in /etc/group . However

the passwords of the users are stored in /etc/shadow :

sudo su -l test1

pwd

whoami

id

exit

pwd

whoami

id

ls -l /etc/passwd

You can see that besides the normal users there are also some system users,

including the superuser (or root), with uid=0.

You don't have permission to see the content of this file.

4. The command chown can be used to change the owner and/or the group of a

file. Let's try it:

file /etc/passwd

less /etc/passwd

ls -l /etc/group

file /etc/group

less /etc/group

ls -l /etc/shadow

file /etc/shadow

less /etc/shadow

sudo less /etc/shadow

chown root: foo.txt

Superuser privileges are required to use it. Let's try with sudo .

DOWNLOAD LESSON03/PART2.CAST

whoami

sudo chown root: foo.txt

ls -l foo.txt

chown test1:root foo.txt

ls -l foo.txt

https://linux-cli.fs.al/assets/files/part2-75eb4bfc6593e350a9b9878806c045b8.cast

Linux Commands Lesson 3 3. Example with permissions

3. Example with permissions

In this example we will set up a shared directory between the users "bill" and

"karen", where they can store their music files.

1. Most of the commands in this part need root permissions, so let's switch first to

the superuser:

2. Let's create the users "bill" and "karen":

3. We also need to create a group for these two users:

sudo su

whoami

useradd -m -s /bin/bash bill

ls /home/

useradd -m -s /bin/bash karen

ls /home/

tail /etc/passwd

groupadd music

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson03

4. Now let's create a directory:

To make this directory shareable we need to change the group ownership and

the group permissions to allow writing:

Now we have a directory that is owned by root and allows read and write

access to the group music . Users bill and karen are members of the group

music , so they can create files in this directory. Other users can only list the

contents of the directory but cannot create files there.

tail /etc/group

adduser bill music

adduser karen music

tail /etc/group

mkdir -p /usr/local/share/Music

ls -ld /usr/local/share/Music

chown :music /usr/local/share/Music

chmod 775 /usr/local/share/Music

ls -ld /usr/local/share/Music

5. But we still have a problem. Let's try to create a file as user bill :

Now let's create an empty file, just for testing:

The group of the created file is bill (which is the primary group of the user

bill). Actually we want the group of the created file to be music , otherwise

karen won't be able to access it properly.

We can fix it by giving this command (as root):

When we talked about permissions we did not mention the special permission s.

When we give this permission to the group of a directory, the files that are

created on this directory will belong to the same group as the directory.

Let's try this by creating another test file as user bill :

su -l bill

> /usr/local/share/Music/test

ls -l /usr/local/share/Music

exit

chmod g+s /usr/local/share/Music

ls -ld /usr/local/share/Music

su -l bill

Notice that the second file belongs to the group music .

DOWNLOAD LESSON03/PART3.CAST

> /usr/local/share/Music/test_1

ls -al /usr/local/share/Music

exit

whoami

exit

whoami

https://linux-cli.fs.al/assets/files/part3-6e65e9ad132fa18a799666e081c69574.cast

Linux Commands Lesson 3 4. Processes

4. Processes

A process is a program that is being executed by the system. Linux is a multitasking

system, which means that it can run many processes at the same time. Actually, if

there is only one processor, only one process can be executed at a certain time.

However the Linux kernel can switch quickly between different processes, allowing

each of them to run for a short time, and because this happens very fast, it gives

the impression that all the programs are running in parallel.

A process in Linux is started by another process, so each process has a parent and

may have some children. Only the init process does not have a parent because it

is the first process that is started by the kernel after it is loaded.

1. We can use the command ps to list processes:

It shows only the processes associated with the current terminal session. TTY is

short for Teletype and refers to the terminal of the process. Each process has a

PID (process ID number).

Shows all the processes associated with any terminal. TIME shows the amount of

CPU time consumed by a process. STAT shows the state of the process, where S

is for sleeping, R is for running, etc.

Displays also the user (the owner of the process). It also shows what percentage

of RAM and CPU a process is using.

ps

ps a

ps au

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson03

This shows all the processes. Notice that the process number 1 is /sbin/init

or /lib/systemd/systemd . Try also:

2. Another command for listing processes is pstree :

With -p shows also the PIDs:

With a username shows only the processes of that user:

With a PID shows only the branch of processes that start at that process:

3. The command top shows a dynamic view of the processes, which is refreshed

periodically:

ps --help

ps --help simple

ps aux | less

ls -l /sbin/init

pstree

pstree -p | less

pstree -p user1

pstree -p 700

The first part of the display shows a system summary, and the second part

shows a list of processes, with the most active ones at the top (those that

consume more RAM, CPU and other resources).

Press q to quit the program.

4. When we give a command in terminal, the shell starts a new process, and waits

until that process is done, before returning the prompt. For example, let's start a

process that takes a long time:

It is going to wait for about 100 seconds. To interrupt a command that is taking

too long you can press Ctrl-c.

If we append an ampersand (&) to the command, the shell we run this

command in background. This means that we are not going to wait until the

command is done, but we will get the prompt immediately, so that we can run

other commands:

A command in background is called a job. We can move one of the jobs in

foreground with the command fg :

top

sleep 100

sleep 200 &

ps

jobs

If we don't give a job number as argument, it assumes the first job.

Now that the sleep job is running in terminal, we can interrupt it with Ctrl-c.

If a command is taking too long, we can also stop it with Ctrl-z and then start it

in background. For example:

Now stop it with Ctrl-z. Then move it to background with bg :

5. We can send signals to a process with the command kill :

fg %1

sleep 200

jobs

bg %1

jobs

sleep 100 &

ps

kill $!

ps

The special variable $! contains the PID of the last background process.

By default, kill sends the signal terminate (15 or TERM), which asks the

process politely to terminate himself.

The signal interrupt (2 or INT) is the same signal that is sent by Ctrl-c. The

program usually will terminate.

The signal stop (19 or STOP) is not delivered to the process. Instead the kernel

pauses the process, without terminating it (same as Ctrl-z for a foreground

process).

sleep 100 &

ps

kill -2 $!

ps

sleep 300 &

jobs

kill -STOP $!

jobs

The signal continue (18 or CONT) will restore a process after it has been paused

with STOP.

The signal kill (9 or KILL) is also not delivered to the process. Instead, the kernel

terminates the process immediately, no questions asked. This is usually used as

a last resort if the process is not responding to the other signals.

There are many other signals as well:

6. The command killall can send a signal to multiple processes that match a

given program or username:

kill -CONT $!

jobs

kill -SIGKILL $!

jobs

kill -l

sleep 100 &

sleep 200 &

sleep 300 &

7. If you have superuser permissions, you can also try these commands to

shutdown or reboot the system:

halt

poweroff

reboot

shutdown -h now

shutdown -r now

DOWNLOAD LESSON03/PART4.CAST

jobs

ps

killall sleep

jobs

ps

https://linux-cli.fs.al/assets/files/part4-18ce2eb146869346ce2f6cd9de17d406.cast

📄️ Intro

Commands and programs in Linux usually produce some output. This

📄️ 1. Redirecting stdout and stderr

1. To redirect standard output to a file we can use the ">"

📄️ 2. Redirecting standard input

A command that makes use of standard input is cat (which is a

📄️ 3. Pipelines and filters

1. Using the pipe operator "|" (vertical bar), the standard output

https://linux-cli.fs.al/lesson04/intro
https://linux-cli.fs.al/lesson04/part1
https://linux-cli.fs.al/lesson04/part2
https://linux-cli.fs.al/lesson04/part3

Linux Commands Lesson 4 Intro

Intro

Commands and programs in Linux usually produce some output. This output is of

two types:

1. The program's results, that is the data that the program is designed to produce

2. Status and error messages, which tell how the program is getting along.

Programs usually output the results to the standard output (or stdout) and the

status messages to the standard error (stderr). By default, both stdout and stderr

are linked to the screen (computer display).

In addition, many programs take input from a facility called standard input (stdin),

which is by default attached to the keyboard.

I/O redirection allows us to change where output goes and where input comes from.

Normally, output goes to the screen and input comes from the keyboard, but with

I/O redirection we can change that.

We can also chain several commands together in a pipeline, where the output of a

command is sent as the input of another. This is a powerful feature that allows us to

perform complex operations on data by combining simple utilities.

DOWNLOAD LESSON04/INTRO.CAST

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson04
https://linux-cli.fs.al/assets/files/intro-a08612ac9e61891a6bc6caa5a4f95ab5.cast

Linux Commands Lesson 4 1. Redirecting stdout and stderr

1. Redirecting stdout and stderr

1. To redirect standard output to a file we can use the "> " redirection operator.

2. Let's try the same example with a directory that does not exist:

ls does not send its error messages to standard output.

The file has zero length.

ls -l /usr/bin

ls -l /usr/bin > ls-output.txt

ls -l ls-output.txt

less ls-output.txt

ls -l /bin/usr

ls -l /bin/usr > ls-output.txt

ls -l ls-output.txt

less ls-output.txt

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson04

The redirection operator > has erased the previous content of the file. In fact, if

we ever need to truncate (erase the content of) a file, or to create a new empty

file, we can use a trick like this:

3. To actually append the redirected output to the existing content of the file,

instead of overwriting it, we can use the operator ">> ":

Notice that the size of the file is growing each time.

4. To redirect stderr we can use the operators "2> " and "2>> ". In Linux, the

standard output has the file descriptor (file stream number) 1, and the standard

error has the file descriptor 2. So, hopefully this syntax makes sense to you and

is similar to that of redirecting stdout.

> ls-output.txt

ls -l /usr/bin >> ls-output.txt

ls -lh ls-output.txt

ls -l /usr/bin >> ls-output.txt

ls -lh ls-output.txt

ls -l /usr/bin >> ls-output.txt

ls -lh ls-output.txt

ls -l /bin/usr 2> ls-error.txt

5. We can redirect both stdout and stderr to the same file, like this:

The redirection 2>&1 redirects the file descriptor 2 (stderr) to the file descriptor

1 (stdout). But before that we redirected the stdout to ls-output.txt , so both

stdout and stderr will be directed to this file.

Notice that the order of the redirections is significant. Let's try it like this:

In this case we redirect file descriptor 2 (stderr) to file descriptor 1 , which is

already the screen, and then we redirect the file descriptor 1 (stdout) to the file.

So, the error messages will still be sent to the screen and not to the file.

A shortcut for redirecting both stdout and stderr to the same file is using "&> ":

For appending to the file we can use "&>> ":

ls -l ls-error.txt

less ls-error.txt

ls -l /bin/usr > ls-output.txt 2>&1

ls -l /bin/usr 2>&1 >ls-output.txt

ls -l /bin/usr &> ls-output.txt

ls -l /bin/usr &>> ls-output.txt

ls -lh ls-output.txt

6. To throw away the output or the error messages of a command, we can send

them to /dev/null :

DOWNLOAD LESSON04/PART1.CAST

ls -l /bin/usr &>> ls-output.txt

ls -lh ls-output.txt

ls -l /bin/usr 2> /dev/null

https://linux-cli.fs.al/assets/files/part1-d8a1a04e90df4030ebea0dad7d37dc33.cast

Linux Commands Lesson 4 2. Redirecting standard input

2. Redirecting standard input

A command that makes use of standard input is cat (which is a shortening for

concatenate). It usually takes one or more files as arguments and outputs their

contents to the screen, joined together.

However if no files are given as arguments it just reads lines from the standard input

(keyboard by default) and writes them to the standard output (screen by default).

Let's try it:

Type a couple of lines and thes press "Ctrl-d" to tell cat that it has reached the end

of file (EOF) on standard input.

If we redirect the standard output to a file, then it can be used to create short files.

For example try these:

Press "Ctrl-d" at the end.

To redirect the standard input (stdin) we can use the redirection operator "< ", like

this:

cat ls-output.txt ls-error.txt

cat

cat > lazy_dog.txt

The quick brown fox jumped over the lazy dog.

cat lazy_dog.txt

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson04

We have changed the source of standard input from the keyboard to the file

lazy_dog.txt .

DOWNLOAD LESSON04/PART2.CAST

cat < lazy_dog.txt

https://linux-cli.fs.al/assets/files/part2-432853154123762613c1525b5d4762d2.cast

Linux Commands Lesson 4 3. Pipelines and filters

3. Pipelines and filters

1. Using the pipe operator "| " (vertical bar), the standard output (stdout) of a

command can be piped to the standard input (stdin) of another command. This

is a powerful feature that allows us to perform complex operations on data by

combining simple utilities. Let's see some examples:

2. We can sort the data with sort :

3. uniq can omit or report repeated lines:

If we want to see the list of duplicates instead we can use the option -d :

4. wc counts the lines, words, and bytes of the input:

ls -l /usr/bin

ls -l /usr/bin | less

ls /bin /usr/bin

ls /bin /usr/bin | sort | less

ls /bin /usr/bin | sort | uniq | less

ls /bin /usr/bin | sort | uniq -d | less

wc ls-output.txt

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson04

If we want it to show only the lines we can use the option -l :

5. grep prints the lines that match a given pattern:

The option -v shows the lines that do not match the pattern:

The option -i can be used if we want grep to ignore case when searching (case

in-sensitive search).

6. head / tail print the top or the last lines of input:

cat ls-output.txt | wc

ls /bin /usr/bin | sort | wc -l

ls /bin /usr/bin | sort -u | wc -l

ls /bin /usr/bin | sort | uniq -d | wc -l

ls /bin /usr/bin | sort -u | grep zip

ls /bin /usr/bin | sort -u | grep zip | wc -l

ls /bin /usr/bin | sort -u | grep -v zip

ls /bin /usr/bin | sort -u | grep -v zip | wc -l

ls /usr/bin > ls-output.txt

The option -f makes it follow the latest changes of the file in real time. Press

"Ctrl-c" to terminate it.

7. tee sends its input both to stdout and to files:

DOWNLOAD LESSON04/PART3.CAST

head ls-output.txt

tail ls-output.txt

tail -n 5 ls-output.txt

tail -5 ls-output.txt

ls /usr/bin | head -n 5

tail /var/log/dpkg.log -n 20

tail /var/log/bootstrap.log -f

ls /usr/bin | tee ls.txt | grep zip

ls -l ls.txt

less ls.txt

https://linux-cli.fs.al/assets/files/part3-b498d1434c1c0c7201772d8641ac47dd.cast

📄️ Intro

- Each time we type a command and press the Enter key, bash does

📄️ 1. Shell expansions

1. Wildcard expansions:

📄️ 2. Shell quotes

1. Using quotes in a command affects the spaces:

📄️ 3. The Environment

We have seen previously some environment variables. These are

https://linux-cli.fs.al/lesson05/intro
https://linux-cli.fs.al/lesson05/part1
https://linux-cli.fs.al/lesson05/part2
https://linux-cli.fs.al/lesson05/part3

Linux Commands Lesson 5 Intro

Intro

Each time we type a command and press the Enter key, bash does some kind of

processing upon the text before executing our command. For example if there is

a "* " in the command, it is replaced by the names of the matching files. This

replacement is called an expansion.

Quoting is used to control how the shell splits the input into parts. It also

disables some types of expansion. Both single and double quotes can be used,

and there are some differences between them.

The shell environment (printenv, set, export). Customizing the prompt.

DOWNLOAD LESSON05/INTRO.CAST

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson05
https://linux-cli.fs.al/assets/files/intro-39a524006e9b62a1a260b9c331a26a2f.cast

Linux Commands Lesson 5 1. Shell expansions

1. Shell expansions

1. Wildcard expansions:

echo displays all the arguments that are passed to it.

The "* " character means match any characters in a filename. The shell expands

the "* " before executing the command echo .

echo this is a test

cd /usr

ls

echo *

echo lib*

echo *bin

echo lib*32

echo */share

echo /*/*/bin

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson05

A question mark "? " matches any single character:

Character sets are enclosed in square brackets:

Character ranges:

Character classes:

echo lib??

echo lib???

echo lib[123456789]?

echo lib[xyz][123456789]?

echo lib[1-9][1-9]

echo lib[a-z][1-9][1-9]

echo lib[1-9][!2]

echo lib[[:digit:]][[:digit:]]

echo lib[[:alpha:]][[:digit:]][[:digit:]]

echo lib[[:alnum:]][[:alnum:]][[:alnum:]]

2. The tilde character ("~ ") expands to the home directory:

3. Arithmetic expansion:

4. Brace expansion:

echo lib[![:digit:]]*

echo lib[36[:lower:]]*

echo /etc/[[:upper:]]*

echo ~

echo ~root

echo $((2 + 2))

echo $(($((5**2)) * 3))

echo $(((5**2) * 3))

echo Five divided by two equals $((5/2))

echo with $((5%2)) left over

5. Variable expansion:

echo Front-{A,B,C}-Back

echo Number_{1..5}

echo {01..15}

echo {001..15}

echo {Z..A}

echo a{A{1,2},B{3,4}}b

cd

mkdir Photos

cd Photos

mkdir {2017..2019}-{01..12}

ls

echo $USER

When the variable does not exist, it is expanded to the empty string.

6. Command substitution:

DOWNLOAD LESSON05/PART1.CAST

printenv | less

echo $SUER

echo $(ls)

ls -l $(which cp)

echo "$(cal)"

https://linux-cli.fs.al/assets/files/part1-e6c3227e2b6e946e6d96b768effec678.cast

Linux Commands Lesson 5 2. Shell quotes

2. Shell quotes

1. Using quotes in a command affects the spaces:

When the shell parses the first command it finds 4 arguments: "this", "is", "a",

"test". Then it calls echo passing it these arguments.

In the second case the quotes let the shell know that there is a single argument:

"this is a test", and it passes to echo only one argument.

2. Double quotes do not prevent variable expansion, but single quotes do:

Bash reckognizes $1 as a special variable and tries to replace its value (which is

empty). Using double quotes does not prevent Bash from expanding variables,

we need single quotes for that.

3. Double quotes do not prevent the shell expansions that start with a "$ ", but

prevents the others:

echo this is a test

echo "this is a test"

echo The total is $100.0

echo "The total is $100.0"

echo 'The total is $100.0'

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson05

They are useful for preserving the spaces, for example:

4. We can also escape "$ " by preceding it with "\ ":

5. The option -e of echo will also enable other escape sequences like \n (for a

new line) and \t (for a tab):

echo ~/*.txt {a,b} $(echo foo) $((2 + 2))

echo "~/*.txt {a,b} $(echo foo) $((2 + 2))"

echo '~/*.txt {a,b} $(echo foo) $((2 + 2))'

echo $(cal)

echo "$(cal)"

echo The balance is: $5.00

echo The balance is: \$5.00

echo "a\nb"

echo -e "a\nb"

echo "a\tb"

DOWNLOAD LESSON05/PART2.CAST

echo -e "a\tb"

https://linux-cli.fs.al/assets/files/part2-b2c304a8030025c6b0a5304f890cf04e.cast

Linux Commands Lesson 5 3. The Environment

3. The Environment

We have seen previously some environment variables. These are variables that are

maintained by the shell and are used to store some settings. They can also be used

by some programs to get configuration values.

1. We can display a list of environment variables with printenv or set :

The list displayed by set is longer because it displays also shell variables and

some functions defined in the shell.

The USER variable basically keeps the value that is displayed by the command

whoami .

2. Some other interesting environment vars are these:

printenv | less

set | less

printenv USER

echo $USER

echo $HOME

echo $PWD

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson05

PATH is used by shell to find a program. For example when we call ls , shell is

looking for it in the first directory of the PATH, then in the second, and so on.

The command which ls shows us where the shell finds the program ls .

3. The environment variables are declared in some configuration files that the shell

loads when it starts. There are two kinds of shells: a login shell session, which is

started when we are prompted for a username and password, and a non-login

shell session, which is started when we launch a terminal.

The configuration scripts loaded by a login shell:

Note: Type Ctrl-x to exit from nano .

The configuration scripts loaded by a non-login shell:

echo $SHELL

echo $LANG

echo $PATH

nano /etc/profile

nano ~/.profile

nano /etc/bash.bashrc

nano ~/.bashrc

However the non-login shell inherits the environment variables from the parent

process, usually a login shell, and the config scripts of a login shell usually

include the config scripts of a non-login shell. So, if we want to make some

changes to the environment, the right place to edit is the file ~/.bashrc .

4. Let's say that we want to modify the variable HISTSIZE, which keeps the size of

the command history.

Add this line at the end of the file:

Press Ctrl-o and Enter to save the changes. Then Ctrl-x to exit.

With HISTSIZE=2000 we are giving a new value to the variable, and the

command export actually saves it to the environment of the shell.

Next time that we will start a shell it will load ~/.bashrc and a new value will be

set to HISTSIZE. But we can also load ~/.bashrc with the command source , so

that the changes are applied right now:

echo $HISTSIZE

nano ~/.bashrc

export HISTSIZE=2000

echo $HISTSIZE

source ~/.bashrc

echo $HISTSIZE

5. One of the environment variables is PS1 , which defines the prompt:

Let's try to play with it, but first let's backup the current value:

If we need to restore we can do it like this:

Let's try some other prompts:

echo $PS1

ps1_old="$PS1"

echo $ps1_old

PS1="$ps1_old"

PS1="--> "

ls -al

PS1="\$ "

ls -al

PS1="\A \h \$ "

ls -al

"\A" displays the time of day and "\h" displays the host.

"\u" displays the user and "\W" displays the name of the current directory.

To save this prompt for future sessions of the shell, we should append this line

to ~/.bashrc :

DOWNLOAD LESSON05/PART3.CAST

PS1="<\u@\h \W>\$ "

ls -al

export PS1="<\u@\h \W>\$ "

https://linux-cli.fs.al/assets/files/part3-5cad273a3582b9f9b756beeec232eb65.cast

📄️ Intro

In this tutorial we will learn about:

📄️ 1. Searching for files

1. We can make a quick search for files with locate:

📄️ 2. More examples with find

1. Let's create some test files:

📄️ 3. Regular expressions

Regular expressions are symbolic notations used to identify patterns

📄️ 4. More regex examples

1. Suppose that we are solving a crossword puzzle and we need a five

https://linux-cli.fs.al/lesson06/intro
https://linux-cli.fs.al/lesson06/part1
https://linux-cli.fs.al/lesson06/part2
https://linux-cli.fs.al/lesson06/part3
https://linux-cli.fs.al/lesson06/part4

Linux Commands Lesson 6 Intro

Intro

In this tutorial we will learn about:

Searching for files (locate, find).

Regular expressions (grep).

Regular expressions are symbolic notations used to identify patterns in text. They

are supported by many command line tools and by most of programming languages

to facilitate the solution of text manipulation problems.

DOWNLOAD LESSON06/INTRO.CAST

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson06
https://linux-cli.fs.al/assets/files/intro-993d59d3514db29b3a0cda8fec06a6ca.cast

Linux Commands Lesson 6 1. Searching for files

1. Searching for files

1. We can make a quick search for files with locate :

If the search requirement is not so simple, we can combine locate with other

tools, like grep :

2. While locate searches are based only on the file name, with find we can also

make searches based on other attributes of files.

It takes as arguments one or more directories that are to be searched:

To find only directories we can use the option -type d and to find only files we

can use -type f :

locate bin/zip

locate zip | grep bin

locate zip | grep bin | grep -v unzip

ls -aR ~

find ~

find . -type d

find . -type f

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson06

3. We can also search by filename and file size:

We enclose the search pattern in double quotes to prevent shell from expanding

"* ".

-2k matches the files whose size is less than 2 Kilobytes, 2k those who are

exactly 2 Kilobytes, and +2k those who are more than 2 Kilobytes. Besides k we

can also use M for Megabytes, G for Gigabytes, etc.

4. find supports many other tests on files and directories, like the time of creation

or modification, the ownership, permissions, etc. These tests can be combined

with logical operators to create more complex logical relationships. For example:

find . -type d | wc -l

find . -type f | wc -l

find . | wc -l

sudo find /etc -type f | wc -l

sudo find /etc -type f -name "*.conf" | wc -l

sudo find /etc -type f -name "*.conf" -size -2k | wc -l

sudo find /etc -type f -name "*.conf" -size 2k | wc -l

sudo find /etc -type f -name "*.conf" -size +2k | wc -l

This looks weird, but if we try to translate it to a more understandable language

it means: find on home directory (files with bad permissions) -or (directories

with bad permissions). We have to escape the parentheses to prevent shell

from interpreting them.

5. We can also do some actions on the files that are found. The default action is to

-print them to the screen, but we can also -delete them:

We can also execute custom actions with -exec :

find ~ \(-type f -not -perm 0600 \) -or \(-type d -not -perm 0700

\)

touch test{1,2,3}.bak

ls

find . -type f -name '*.bak' -delete

ls

touch test{1,2,3}.bak

find . -type f -name '*.bak' -print -delete

ls

touch test{1,2,3}.bak

Here {} represents the pathname that is found and ; is required to indicate the

end of the command. Both of them have been quoted to prevent shell from

interpreting them.

If we use -ok instead of -exec then each command will be confirmed before

being executed:

6. Another way to perform actions on the results of find is to pipe them to xargs ,

like this:

ls

find . -name '*.bak' -exec rm '{}' ';'

ls

touch test{1,2,3}.bak

ls

find . -name '*.bak' -ok rm '{}' ';'

touch test{1,2,3}.bak

ls

find . -name '*.bak' | xargs echo

xargs gets input from stdin and converts it into an argument list for the given

command.

DOWNLOAD LESSON06/PART1.CAST

find . -name '*.bak' | xargs ls -l

find . -name '*.bak' | xargs rm

ls

https://linux-cli.fs.al/assets/files/part1-1452aee11ade263ae5c8d50530f6148b.cast

Linux Commands Lesson 6 2. More examples with find

2. More examples with find

1. Let's create some test files:

The command touch in this case creates empty files.

2. Find all the files named file-A :

3. Create a timestamp file:

mkdir -p test/dir-{001..100}

touch test/dir-{001..100}/file-{A..Z}

ls test/

ls test/dir-001/

ls test/dir-002/

find test -type f -name 'file-A'

find test -type f -name 'file-A' | wc -l

touch test/timestamp

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson06

This creates an empty file and sets its modification time to the current time. We

can verify this with stat which shows everything that the system knows about

a file:

We can see that after the second touch the times have been updated.

4. Next, let's use find to update all files named file-B :

5. Now let's use find to identify the updated files by comparing them to the

reference file timestamp :

The result contains all 100 instances of file-B . Since we did a touch on them

after updating timestamp , they are now "newer" than the file timestamp .

6. Let's find again the files and directories with bad permissions:

stat test/timestamp

touch test/timestamp

stat test/timestamp

find test -name 'file-B' -exec touch '{}' ';'

find test -type f -newer test/timestamp

find test -type f -newer test/timestamp | wc -l

find test \(-type f -not -perm 0600 \) \

 -or \(-type d -not -perm 0700 \)

7. Let's add some actions to the command above in order to fix the permissions:

Note: This example is a bit complex just to illustrate the logical operators and

parantheses, however we could have done it in two simpler steps, like this:

find test \(-type f -not -perm 0600 \) \

 -or \(-type d -not -perm 0700 \) \

 | wc -l

find test \

 \(\

 -type f -not -perm 0600 \

 -exec chmod 0600 '{}' ';' \

 \) -or \

 \(\

 -type d -not -perm 0700 \

 -exec chmod 0700 '{}' ';' \

 \)

find test \(-type f -not -perm 0600 \) \

 -or \(-type d -not -perm 0700 \)

find test \(-type f -perm 0600 \) \

 -or \(-type d -perm 0700 \)

find test \(-type f -perm 0600 \) \

 -or \(-type d -perm 0700 \) \

 | wc -l

find test -type f -not -perm 0600 \

 -exec chmod 0600 '{}' ';'

8. Let's try some more tests:

Find files or directories whose contents or attributes were modified more than 1

minute ago:

Less than 10 minutes ago:

Find files or directories whose contents were modified more than 1 minute ago:

Less than 10 minutes ago:

Find files or directories whose contents or attributes were modified more than 7

days ago:

Find files or directories whose contents were modified less than 7 days ago:

find test -type d -not -perm 0700 \

 -exec chmod 0700 '{}' ';'

find test/ -cmin +1 | wc -l

find test/ -cmin -10 | wc -l

find test/ -mmin +1 | wc -l

find test/ -mmin -10 | wc -l

find test/ -ctime +7 | wc -l

find test/ -mtime -7 | wc -l

Find empty files and directories:

DOWNLOAD LESSON06/PART2.CAST

find test/ -empty | wc -l

https://linux-cli.fs.al/assets/files/part2-9dd653b2202ab1056f25e6f0c37feccc.cast

Linux Commands Lesson 6 3. Regular expressions

3. Regular expressions

Regular expressions are symbolic notations used to identify patterns in text. They

are supported by many command line tools and by most of programming languages

to facilitate the solution of text manipulation problems.

1. We will test regular expressions with grep (which means "global regular

expression print"). It searches text files for the occurrence of text matching a

specified regular expression and outputs any line containing a match to

standard output.

In order to explore grep , let's create some text files to search:

We can do a simple search on these files like this:

ls /usr/bin | grep zip

ls /bin > dirlist-bin.txt

ls /usr/bin > dirlist-usr-bin.txt

ls /sbin > dirlist-sbin.txt

ls /usr/sbin > dirlist-usr-sbin.txt

ls dirlist*.txt

grep bzip dirlist*.txt

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson06

If we are interested only in the list of files that contain matches, we can use the

option -l :

Conversely, if we want to see a list of files that do not contain a match, we can

use -L :

2. While it may not seem apparent, we have been using regular expressions in the

searches we did so far, albeit very simple ones. The regular expression "bzip"

means that a line will match if it contains the letters "b", "z", "i", "p" in this order

and without other characters in between.

Besides the literal characters, which represent themselves, we can also use

metacharacters in a pattern. For example a dot (.) matches any character:

The option -h suppresses the output of filenames.

Notice that the zip program was not found because it has only 3 letters and

does not match the pattern.

3. The caret (^) and dollar sign ($) are treated as anchors in regular expressions.

This means that they cause the match to occur only if the regular expression is

found at the beginning of the line (^) or at the end of the line ($):

grep -l bzip dirlist*.txt

grep -L bzip dirlist*.txt

grep -h '.zip' dirlist*.txt

grep -h '^zip' dirlist*.txt

grep -h 'zip$' dirlist*.txt

Note that the regular expression '^$ ' will match empty lines.

4. Using bracket expressions we can match a single character from a specified set

of characters:

If the first character in a bracket expression is a caret (^), then any character

will be matched, except for those listed:

The caret character only invokes negation if it is the first character within the

bracket expression; otherwise it loses its special meaning and becomes an

ordinary character in the set:

5. If we want to find all lines that start with an uppercase letter, we can do it like

this:

We can do less typing if we use a range:

If we want to match any alphanumeric character (all the letters and digits), we

can use several ranges, like this:

grep -h '^zip$' dirlist*.txt

grep -h '[bg]zip' dirlist*.txt

grep -h '[^bg]zip' dirlist*.txt

grep -h '[b^g]zip' dirlist*.txt

grep -h '^[ABCDEFGHIJKLMNOPQRSTUVWXYZ]' dirlist*.txt

grep -h '^[A-Z]' dirlist*.txt

However the dash (-) character in this example stands for itself, does not make

a range:

Besides ranges, another way to match groups of characters is using POSIX

character classes:

Other character classes are: [:alpha:] , [:lower:] , [:digit:] , [:space:] ,

[:punct:] (for punctuation characters), etc.

6. With a vertical bar (|) we can define alternative matching patterns:

grep -h '^[A-Za-z0-9]' dirlist*.txt

grep -h '^[-AZ]' dirlist*.txt

grep -h '^[[:alnum:]]' dirlist*.txt

ls /usr/sbin/[[:upper:]]*

echo "AAA" | grep AAA

echo "BBB" | grep BBB

echo "AAA" | grep 'AAA\|BBB'

echo "BBB" | grep -E 'AAA|BBB'

echo "CCC" | grep -E 'AAA|BBB'

The option -E tells grep to use extended regular expressions. With extended

regular expressions the vertical bar (|) is a metacharacter (used for alternation)

and we need to escape it (with \) to use it as a literal character. With basic

regular expressions (without the option -E) the vertical bar is a literal character

and we need to escape it (with \) if we want to use it as a metacharacter.

7. Other metacharacters that are recognized by extended regular expressions, and

which behave similar to | are: (,) , { , } , ? , + . For example:

Note that this is different from:

In the first example all the patterns are matched at the beginning of the line. In

the second one only bz is matched at the beginning.

DOWNLOAD LESSON06/PART3.CAST

echo "CCC" | grep -E 'AAA|BBB|CCC'

grep -Eh '^(bz|gz|zip)' dirlist*.txt

grep -Eh '^bz|gz|zip' dirlist*.txt

https://linux-cli.fs.al/assets/files/part3-d03a0c36b4b2ac86c8d69f7d0c119dc8.cast

Linux Commands Lesson 6 4. More regex examples

4. More regex examples

1. Suppose that we are solving a crossword puzzle and we need a five letter word

whose third letter is "j" and last letter is "r". Let's try to use grep and regex to

solve this.

Fist of all make sure that we have a dictionary of words installed:

Now try this:

The option -i is used to ignore the case (uppercase, lowercase).

The regex pattern '^..j.r$' will match lines that contain exactly 5 letters,

where the third letter is j and the last one is r .

2. Let's say that we want to check a phone number for validity and we consider a

phone number to be valid if it is in the form (nnn) nnn-nnnn or in the form nnn

nnn-nnnn where n is a digit. We can do it like this:

sudo apt install wbritish

ls /usr/share/dict/

less /usr/share/dict/words

cat /usr/share/dict/words | wc -l

grep -i '^..j.r$' /usr/share/dict/words

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson06

Since we are using the option -E (for extended), we have to escape the

parentheses \(and \) so that they are not interpreted as metacharacters.

If we use basic regular expressions (without -E), then we don't need to escape

the parentheses, but in this case we will have to escape the question marks

(\?) so that they are interpreted as metacharacters:

The question mark as a metacharacter means that the parentheses before it can

be zero or one time.

3. Using the metachars {} we can express the number of required matches. For

example:

The expression {3} matches if the preceding element occurs exactly 3 times.

echo "(555) 123-4567" | \

 grep -E '^\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9]

[0-9]$'

echo "555 123-4567" | \

 grep -E '^\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9]

[0-9]$'

echo "AAA 123-4567" | \

 grep -E '^\(?[0-9][0-9][0-9]\)? [0-9][0-9][0-9]-[0-9][0-9][0-9]

[0-9]$'

echo "(555) 123-4567" | \

 grep '^(\?[0-9][0-9][0-9])\? [0-9][0-9][0-9]-[0-9][0-9][0-9][0-

9]$'

echo "(555) 123-4567" | \

 grep -E '^\(?[0-9]{3}\)? [0-9]{3}-[0-9]{4}$'

We could also replace ? by {0,1} , or {,1} :

In general, {n,m} matches if the preceding element occurs at least n times, but

no more than m times. These are also valid: {n,} (at least n times), and {,m}

(at most m times).

4. Similar to ? which is equivalent to {0,1} , there is also * which is equivalent to

{0,} (zero or more occurrences), and + which is equivalent to {1,} (one or

more, at least one occurrence):

Let's say that we want to check if a string is a sentence. This means that it

starts with an uppercase letter, then contains any number of upper and

lowercase letters and spaces, and finally ends with a period. We could do it like

this:

Or like this:

echo "(555) 123-4567" | \

 grep -E '^\({0,1}[0-9]{3}\){,1} [0-9]{3}-[0-9]{4}$'

echo "555 123-4567" | \

 grep -E '^\({0,1}[0-9]{3}\){,1} [0-9]{3}-[0-9]{4}$'

echo "This works." | grep -E '[A-Z][A-Za-z]*\.'

echo "This Works." | grep -E '[A-Z][A-Za-z]*\.'

echo "this does not" | grep -E '[A-Z][A-Za-z]*\.'

echo "This works." | grep -E '[[:upper:]][[:upper:][:lower:]]*\.'

Note: In all these cases we have to escape the period (\.) so that it matches

itself instead of any character.

5. Here is a regular expression that will only match lines consisting of groups of

one or more alphabetic characters separated by single spaces:

Does not match because there are two consecutive spaces.

Does not match because there is a non-alphabetic character.

6. Let's create a list of random phone numbers for testings:

echo "This that" | grep -E '^([[:alpha:]]+ ?)+$'

echo "a b c" | grep -E '^([[:alpha:]]+ ?)+$'

echo "a b c" | grep -E '^([[:alpha:]]+ ?)+$'

echo "a b 9" | grep -E '^([[:alpha:]]+ ?)+$'

echo $RANDOM

echo $RANDOM

echo ${RANDOM:0:3}

for i in {1..10}; do \

 echo "${RANDOM:0:3} ${RANDOM:0:3}-${RANDOM:0:4}" >>

phonelist.txt; \

done

You can see that some of the phone numbers are malformed. We can display

those that are malformed like this:

The option -v makes an inverse match, which means that grep displays only

the lines that do not match the given pattern.

7. Regular expressions can be used with many commands, not just with grep .

For example let's use them with find to find the files that contain bad

characters in their name (like spaces, punctuation marks, etc):

cat phonelist.txt

for i in {1..100}; do \

 echo "${RANDOM:0:3} ${RANDOM:0:3}-${RANDOM:0:4}" >>

phonelist.txt; \

done

less phonelist.txt

cat phonelist.txt | wc -l

grep -Ev '^[0-9]{3} [0-9]{3}-[0-9]{4}$' phonelist.txt

touch "bad file name!"

ls -l

find . -regex '.*[^-_./0-9a-zA-Z].*'

Different from grep , find expects the pattern to match the whole filename,

that's why we are appending and prepending .* to the pattern.

We can use regular expressions with locate like this:

We can also use them with less :

We can press / and write a regular expression, and less will find and highlight

the matching lines. For example:

The invalid lines will not be highlighted and will be easy to spot.

Regular expressions can also be used with zgrep like this:

It will find man pages that contain either "regex" or "regular expression". As we

can see, regular expressions show up in a lot of programs.

DOWNLOAD LESSON06/PART4.CAST

locate --regex 'bin/(bz|gz|zip)'

less phonelist.txt

/^[0-9]{3} [0-9]{3}-[0-9]{4}$

cd /usr/share/man/man1

zgrep -El 'regex|regular expression' *.gz

https://linux-cli.fs.al/assets/files/part4-4a59e92171e81fda7b235dd1722ee1ad.cast

📄️ Intro

Linux relies heavily on text files for data storage, so it makes sense

📄️ 1. sort

1. Let's try and compare these commands:

📄️ 2. cut

1. The command cut extracts a certain column (field) from the input,

📄️ 3. paste

The paste command does the opposite of cut. Rather than extracting

📄️ 4. join

The command join, like paste, adds columns to a file. However it

📄️ 5. Comparing text

https://linux-cli.fs.al/lesson07/intro
https://linux-cli.fs.al/lesson07/part1
https://linux-cli.fs.al/lesson07/part2
https://linux-cli.fs.al/lesson07/part3
https://linux-cli.fs.al/lesson07/part4
https://linux-cli.fs.al/lesson07/part5

1. Let's create two test files:

📄️ 6. Editing on the fly

1. The tr program is used to transliterate characters:

📄️ 7. aspell

1. Plain text files:

https://linux-cli.fs.al/lesson07/part5
https://linux-cli.fs.al/lesson07/part5
https://linux-cli.fs.al/lesson07/part6
https://linux-cli.fs.al/lesson07/part7

Linux Commands Lesson 7 Intro

Intro

Linux relies heavily on text files for data storage, so it makes sense that there are

many tools for manipulating text. Some of these tools are:

cat -- Concatenate files and print on the standard output

sort -- Sort lines of text files

uniq -- Report or omit repeated lines

cut -- Extract sections from each line of files

paste -- Merge lines of files

join -- Join lines of two files on a common field

comm -- Compare two sorted files line by line

diff -- Compare files line by line

patch -- Apply a diff file to an original

tr -- Translate or delete characters

sed -- Stream editor for filtering and transforming text

aspell -- Interactive spell checker

DOWNLOAD LESSON07/INTRO.CAST

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson07
https://linux-cli.fs.al/assets/files/intro-84dab1aeb4e2cfd0df1fef790f3ac74b.cast

Linux Commands Lesson 7 1. sort

1. sort

1. Let's try and compare these commands:

The command du gets the size (disk usage) of the files and directories of

/usr/share , and head filters the top 10 results.

Then we try to sort them with sort and sort -r (reverse), but it does not seem

to work as expected (sorting results by the size). This is because sort by

default sorts the first column alphabetically, so 2 is bigger than 10 (because 2

comes after 1 on the character set).

With the option -n we tell sort to do a numerical sort. So, the last command

returns the top 10 biggest files and directories on /usr/share .

2. This example works because the numerical values happen to be on the first

column of the output. What if we want to sort a list based on another column?

For example the result of ls -l :

du -s /usr/share/* | less

du -s /usr/share/* | sort | less

du -s /usr/share/* | sort -r | less

du -s /usr/share/* | sort -nr | less

du -s /usr/share/* | sort -nr | head

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson07

Ignoring for the moment that ls can sort its results by size, we could use sort

to sort them like this:

The option -k5 tells sort to use the fifth field as the key for sorting. By the

way, ls like most of the commands, separates the fields of its output by a TAB.

3. For testing we are going to use the file distros.txt, which is like a history of some

Linux distributions (containing their versions and release dates).

The option -A makes it show any special characters. The tab character is

represented by ^I , and the $ shows the end of line.

4. Let's try to sort it:

The result is almost correct, but Fedora version numbers are not in the correct

order (since 1 comes before 5 in the character set).

To fix this we are going to sort on multiple keys. We want an alphabetic sort on

the first field and a numeric sort on the second field:

ls -l /usr/bin | head

ls -l /usr/bin | sort -nr -k 5 | head

wget https://linux-cli.fs.al/examples/lesson07/distros.txt

cat distros.txt

cat -A distros.txt

sort distros.txt

sort --key=1,1 --key=2n distros.txt

https://linux-cli.fs.al/examples/lesson07/distros.txt

Notice that if we don't use a range of fields (like 1,1 , which means start at field

1 and end at field 1), it is not going to work as expected:

This is because in this case it starts at field 1 and goes up to the end of the line,

ignoring thus the second key.

The modifier n stands for numerical sort. Other modifiers are r for reverse, b

for ignore blanks, etc.

5. Suppose that we want to sort the list in reverse chronological order (by release

date). We can do it like this:

The --key option allows specification of offsets within fields. So 3.7 means

start sorting from the 7-th character of the 3-rd field, which is the year. The

modifier n makes it a numerical sort, r does reverse sorting, and with b we are

suppressing any leading spaces of the third field.

In a similar way, the second sort key 3.1 sorts by the month, and the third key

3.4 sorts by day.

6. Some files don't use tabs and spaces as delimiters, for example the file

/etc/passwd :

sort -k 1,1 -k 2n distros.txt

sort -k1,1 -k2n distros.txt

sort -k 1 -k 2n distros.txt

sort -k 3.7nbr -k 3.1nbr -k 3.4nbr distros.txt

head /etc/passwd

In this case we can use the option -t to define the field separator character. For

example to sort /etc/passwd on the seventh field (the account's default shell),

we could do this:

DOWNLOAD LESSON07/PART1.CAST

sort -t ':' -k 7 /etc/passwd | head

https://linux-cli.fs.al/assets/files/part1-fe39aee0450388d3775ab240c80886e7.cast

Linux Commands Lesson 7 2. cut

2. cut

1. The command cut extracts a certain column (field) from the input, for example:

2. If we want to extract only the year, we can do it like this:

The option -c tell cut to extract from the line characters, instead of fields (as if

each character is a field).

3. Another way to get the year would be like this:

The command expand replaces tabs by the corresponding number of spaces, so

that the year would always start at the position 23.

4. When working with fields, it is possible to specify a different field delimiter,

instead of the tab. For example:

cut -f 3 distros.txt

cut -f 1,3 distros.txt

cut -f 1-2,3 distros.txt

cut -f 3 distros.txt | cut -c 7-10

cut -f 3 distros.txt | cut -c 7-10,1-2,4-5

expand distros.txt | cut -c 23-

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson07

Here we extract the first field from /etc/passwd .

DOWNLOAD LESSON07/PART2.CAST

head /etc/passwd

cut -d ':' -f 1 /etc/passwd | head

https://linux-cli.fs.al/assets/files/part2-e9d1fd9908042cdb2d6bed91b6da4c85.cast

Linux Commands Lesson 7 3. paste

3. paste

The paste command does the opposite of cut . Rather than extracting a column of

text from a file, it adds one or more columns of text to a file.

To demonstrate how paste operates, we will perform some surgery on our

distros.txt file to produce a chronological list of releases.

1. First let's sort distros by date:

2. Next, let's use cut to extract the first two fields/columns from the file (the distro

name and version):

Let's also extract the release dates:

head distros.txt

sort -k 3.7nbr -k 3.1nbr -k 3.4nbr \

 distros.txt > distros-by-date.txt

head distros-by-date.txt

cut -f 1,2 distros-by-date.txt > distros-versions.txt

head distros-versions.txt

cut -f 3 distros-by-date.txt > distros-dates.txt

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson07

3. To complete the process, let's use paste to put the column of dates ahead of

distro names and versions, thus creating a chronological list:

DOWNLOAD LESSON07/PART3.CAST

head distros-dates.txt

paste distros-dates.txt distros-versions.txt \

 > distros-chronological.txt

head distros-chronological.txt

https://linux-cli.fs.al/assets/files/part3-5e46ba3cdc5676aa492ab2974404e346.cast

Linux Commands Lesson 7 4. join

4. join

The command join , like paste , adds columns to a file. However it does it in a way

that is similar to the join operation in relational databases. It joins data from

multiple files based on a shared key field.

1. To demonstrate join let's make a couple of files with a shared key. The first file

will contain the release dates and the release names:

2. The second file will contain the release dates and the version numbers:

cut -f 1,1 distros-by-date.txt > distros-names.txt

paste \

 distros-dates.txt \

 distros-names.txt \

 > distros-key-names.txt

head distros-key-names.txt

cut -f 2,2 distros-by-date.txt > distros-vernums.txt

paste \

 distros-dates.txt \

 distros-vernums.txt \

 > distros-key-vernums.txt

head distros-key-vernums.txt

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson07

3. Both of these files have the release date as a common field. Let's join them:

It is important that the files must be sorted on the key field for join to work

properly.

DOWNLOAD LESSON07/PART4.CAST

join \

 distros-key-names.txt \

 distros-key-vernums.txt \

 | head

https://linux-cli.fs.al/assets/files/part4-5127ec11eb71e8e47d432b8f762edb46.cast

Linux Commands Lesson 7 5. Comparing text

5. Comparing text

1. Let's create two test files:

2. We can compare them with comm :

In this case we are suppressing the columns 1 and 2.

3. A more complex tool is diff :

With context:

cat > file1.txt <<EOF

a

b

c

d

EOF

cat > file2.txt <<EOF

b

c

d

e

EOF

comm file1.txt file2.txt

comm -12 file1.txt file2.txt

diff file1.txt file2.txt

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson07

Unified format is more concise:

4. To create a patch file usually the options -Naur are used:

We can use the command patch to apply a patch file:

Now file1.txt has the same content as file2.txt .

DOWNLOAD LESSON07/PART5.CAST

diff -c file1.txt file2.txt

diff -u file1.txt file2.txt

diff -Naur file1.txt file2.txt > patchfile.txt

cat patchfile.txt

patch file1.txt patchfile.txt

cat file1.txt

https://linux-cli.fs.al/assets/files/part5-2730d4d7e12f797858fcf4682c208533.cast

Linux Commands Lesson 7 6. Editing on the fly

6. Editing on the fly

1. The tr program is used to transliterate characters:

Multiple characters can be converted to a single character:

With the option -d it can delete characters:

With the option -s it can squeeze repeated characters:

2. As another example, let's use tr to implement ROT13 encoding (where each

character is moved 13 places up the alphabet):

To decode, perform the same translation a second time:

echo "lowercase letters" | tr a-z A-Z

echo "lowercase letters" | tr [:lower:] A

echo "lowercase letters" | tr -d e

echo "aaabbbccc" | tr -s ab

echo "abcabcabc" | tr -s ab

echo "secret text" | tr a-zA-Z n-za-mN-ZA-M

echo "frperg grkg" | tr a-zA-Z n-za-mN-ZA-M

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson07

3. The program sed means stream editor.

The command s stands for substitute.

The character immediately after s becomes the delimiter.

The commands in sed can be preceded by an address:

4. Let's try some more examples on distros.txt :

The option -n does not print lines by default, and the p command prints only

the lines in the given range.

Prints only the lines that match the given regular expression.

Prints only the lines that do not match.

echo "front" | sed 's/front/back/'

echo "front" | sed 's_front_back_'

echo "front" | sed '1s/front/back/'

echo "front" | sed '2s/front/back/'

sed -n '1,5p' distros.txt

sed -n '/SUSE/p' distros.txt

sed -n '/SUSE/!p' distros.txt

5. The command s substitutes by default only the first occurrence on a matching

line:

We can append the modifier g (global) to replace all the occurrences:

6. Let's change the date format from MM/DD/YYYY to YYYY-MM-DD on

distros.txt :

First, we are using the option -E, --regexp-extended because there are lots of

special characters like (,) , { , } in the regular expression and escaping all of

them by a \ would make it really messy and unreadable.

Then, we are enclosing in parentheses the parts of the regexp that match the

month ([0-9]{2}), the day ([0-9]{2}) and the year ([0-9]{4}).

The strings that are matched by a subexpression can be used in the

replacement like this: \n , where n is the number of the matching subexpression

(pair of parentheses).

7. It is possible to give several commands to the same sed program, like this:

However, sometimes it is preferable to list these commands in a sed script file,

and call this script instead. For example:

echo "aaabbbccc" | sed 's/b/B/'

echo "aaabbbccc" | sed 's/b/B/g'

sed -E 's#([0-9]{2})/([0-9]{2})/([0-9]{4})$#\3-\1-\2#' distros.txt

echo "aaabbbccc" | sed -e 's/b/B/g' -e 's/a/A/g'

The first line is a comment.

Then, the i command inserts something before the first line.

The s command changes the date format.

Finally, the y command transliterates the lower case characters to upper case,

similar to the command tr . However, unlike tr , it does not recognize character

ranges or character classes, so we have to list all the letters of the alphabet.

DOWNLOAD LESSON07/PART6.CAST

cat <<'EOF' > distros.sed

#sed script to produce a distro report

1 i\

\

Linux Distribution Report\

s#([0-9]{2})/([0-9]{2})/([0-9]{4})$#\3-\1-\2#

y/abcdefghijklmnopqrstuvwxyz/ABCDEFGHIJKLMNOPQRSTUVWXYZ/

EOF

download

wget https://linux-cli.fs.al/examples/lesson07/distros.sed

cat distros.sed

sed -E -f distros.sed distros.txt

https://linux-cli.fs.al/assets/files/part6-909f84b40d5bf8b132cc2fc857ba853e.cast

Linux Commands Lesson 7 7. aspell

7. aspell

1. Plain text files:

2. HTML files:

echo 'The quick brown fox jimped over the lazy dog.' > foo.txt

cat foo.txt

aspell check foo.txt

cat foo.txt

cat <<EOF > foo.html

<html>

 <head>

 <title>Mispelled HTML file</title>

 </head>

 <body>

 <p>The quick brown fox jimped over the lazy dog.</p>

 </body>

</html>

EOF

download

wget https://linux-cli.fs.al/examples/lesson07/foo.html

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson07

If the extenssion of the file is not .html we can force the html mode with the -H

option.

DOWNLOAD LESSON07/PART7.CAST

cat foo.html

aspell check foo.html

cat foo.html

aspell --help | less

https://linux-cli.fs.al/assets/files/part7-c70b427ff46785734c5c627b96507d55.cast

📄️ Intro

- Archiving (gzip, bzip2, tar, zip, rsync)

📄️ 1. Archiving and backup

1. We can use gzip and bzip2 to compress one or more files:

📄️ 2. Networking

1. Basic tools:

📄️ 3. Networking: ssh

1. Another network tool is ssh, which can be used to login to a

📄️ 4. Filesystems

In this section we will try an example with a CoW (Copy-on-Write)

📄️ 5. Package Management

https://linux-cli.fs.al/lesson08/intro
https://linux-cli.fs.al/lesson08/part1
https://linux-cli.fs.al/lesson08/part2
https://linux-cli.fs.al/lesson08/part3
https://linux-cli.fs.al/lesson08/part4
https://linux-cli.fs.al/lesson08/part5
https://linux-cli.fs.al/lesson08/part5

<AsciinemaWidget

https://linux-cli.fs.al/lesson08/part5
https://linux-cli.fs.al/lesson08/part5

Linux Commands Lesson 8 Intro

Intro

Archiving (gzip, bzip2, tar, zip, rsync)

Networking (ping, traceroute, ip, netstat, wget, curl, ssh, scp, sftp)

Filesystems (mount, umount, fdisk, mkfs, dd)

Package Management (apt)

DOWNLOAD LESSON08/INTRO.CAST

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson08
https://linux-cli.fs.al/assets/files/intro-225edf21c13f2cc3ce8ceccfdfbdbdd2.cast

Linux Commands Lesson 8 1. Archiving and backup

1. Archiving and backup

1. We can use gzip and bzip2 to compress one or more files:

ls -l /etc > foo.txt

ls -lh foo.*

gzip foo.txt

ls -lh foo.*

gunzip foo.txt

ls -lh foo.*

ls -l /etc | gzip > foo.txt.gz

gunzip -c foo.txt.gz

zcat foo.txt.gz | less

zless foo.txt.gz

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson08

2. We can use tar to archive files.

Let's create a test directory:

Create a tar archive of the entire directory:

bzip2 foo.txt

ls -lh foo.*

bunzip2 foo.txt.bz2

ls -lh foo.*

mkdir -p testdir/dir-{001..100}

touch testdir/dir-{001..100}/file-{A..Z}

ls testdir/

ls testdir/dir-001/

tar -c -f testdir.tar testdir

tar -cf testdir.tar testdir

The option -c means create , and the option -f is for the filename of the

archive.

The option -t is used to list the contents of the archive, and -v is for verbose:

Now let's extract the archive in a new location:

3. By default, tar removes the leading / from absolute filenames:

ls -lh

tar -tf testdir.tar | less

tar -tvf testdir.tar | less

mkdir foo

cd foo

tar -xf ../testdir.tar

ls

tree -C | less -r

cd .. ; rm -rf foo/

4. We can extract only some files from the archive (not all the files):

echo $(pwd)/testdir

tar cf testdir2.tar $(pwd)/testdir

tar tf testdir2.tar | less

mkdir foo

tar xf testdir2.tar -C foo/

tree foo -C | less -r

rm -rf foo

mkdir foo

cd foo

tar tf ../testdir.tar testdir/dir-001/file-A

tar xf ../testdir.tar testdir/dir-001/file-A

tree

We can also use --wildcards , like this:

5. Sometimes it is useful to combine tar with find and gzip :

The option 'r' is for appending files to an archive.

tar xf ../testdir.tar testdir/dir-002/file-{A,B,C}

tree

tar xf ../testdir.tar --wildcards 'testdir/dir-*/file-A'

tree -C | less -r

cd .. ; rm -rf foo

find testdir -name 'file-A'

find testdir -name 'file-A' \

 -exec tar rf testdir3.tar '{}' '+'

tar tf testdir3.tar | less

find testdir -name 'file-B' \

 -exec tar rf testdir3.tar '{}' '+'

tar tf testdir3.tar | less

The first - makes tar to send the output to stdout instead of a file. The option -

T or --files-from includes in the archive only the files listed in the given file.

In this case we are reading the list of files from - , which means the stdin and is

the list of files coming from the command find . Then we are passing the output

of tar to gzip in order to compress it.

We can also use the options z or j to compress the archive:

The option j uses bzip2 compression, instead of bzip .

6. The zip program is both a compression tool and an archiver:

The option -r is for recursion.

find testdir -name 'file-A' \

 | tar cf - -T - \

 | gzip > testdir.tgz

find testdir -name 'file-A' \

 | tar czf testdir.tgz -T -

find testdir -name 'file-A' \

 | tar cjf testdir.tbz -T -

ls -lh

zip -r testdir.zip testdir

ls -lh

mkdir -p foo

7. We can use rsync to synchronize files and directories:

Notice that in the second case no files are copied because rsync detects that

there are no differences between the source and the destination.

cd foo

unzip ../testdir.zip

tree | less

unzip -l ../testdir.zip testdir/dir-007/file-*

rm -rf testdir

unzip ../testdir.zip testdir/dir-007/file-*

tree | less

cd .. ; rm -rf foo

rsync -av testdir foo

ls foo

rsync -av testdir foo

touch testdir/dir-099/file-Z

With the option --delete we can also delete the files on the destination

directory that are not present on the source directory.

rsync can be used over the network as well, usually combined with ssh .

DOWNLOAD LESSON08/PART1.CAST

rsync -av testdir foo

rm testdir/dir-099/file-Z

rsync -av testdir foo

ls foo/testdir/dir-099/file-Z

rsync -av --delete testdir foo

ls foo/testdir/dir-099/file-Z

https://linux-cli.fs.al/assets/files/part1-e250ab0ccf8491b9d6160c2de2ce4e17.cast

Linux Commands Lesson 8 2. Networking

2. Networking

1. Basic tools:

traceroute linuxcommand.org

ip address

ip addr

ip a

ip addr show lo

ip route

ip r

ping -c 3 8.8.8.8

dig linuxcommand.org

dig linuxcommand.org +short

ping -c 3 linuxcommand.org

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson08

tracepath linuxcommand.org

2. For downloading files we can use wget or curl :

3. Netcat is a simple tool for network communication.

Let's use it to listen to the port 12345 :

Open another terminal and connect to the same port like this:

Now, any line that you type here is sent and displayed to the other terminal:

wget http://linuxcommand.org/index.php

less index.php

wget -O index.html 'http://linuxcommand.org/index.php'

less index.html

curl http://linuxcommand.org/index.php

curl http://linuxcommand.org/index.php > index.html

nc -l 12345

nc localhost 12345 # on the second terminal

Hello network

Check the other terminal.

Interrupt them with Ctrl-c .

This may not seem very impressive, but instead of localhost we could have

used a real server name or IP and connect to it remotely. It may be used to

check that the TCP port 12345 on the server is accessible from the client (in

case that there is a firewall, for example).

For checking a UDP port we can add the option -u to both of these commands.

It can also be used as a simple tool for file transfer:

As another example, let's combine it with tar to transfer a whole directory:

The quick brown fox jumped over the internet

nc -l 12345 > file.txt # on the first terminal

nc -w 3 localhost 12345 < /etc/passwd # on the second terminal

ls file.txt # on the first terminal

cat file.txt # on the first terminal

mkdir cptest

cd cptest

Switch to the second terminal.

Switch to the first terminal.

DOWNLOAD LESSON08/PART2.CAST

nc -l 12345 | tar xzpf -

cd testdir

ls

tar czpf - . | nc -w 3 localhost 12345

ls

cd ..

rm -rf cptest

https://linux-cli.fs.al/assets/files/part2-4dee907f00da981c1b86ea8c520629a2.cast

Linux Commands Lesson 8 3. Networking: ssh

3. Networking: ssh

1. Another network tool is ssh , which can be used to login to a remote system,

execute commands remotely, and more.

First let's create a user account:

Let's login to it:

We can also use ssh to just run a command remotely:

sudo useradd -m -s /bin/bash user01

echo user01:pass01 | sudo chpasswd

ssh user01@localhost

ls -al

exit

ssh user01@localhost ls -al

ssh user01@localhost whoami

ssh user01@localhost ls .*

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson08

2. Writing a password each time that we use ssh quickly becomes tedious. We can

use keys instead, which is easier and more secure.

First let's generate a public/private key pair:

The option -N '' makes it generate a key that does not have a passphrase.

In order to be able to login to the server with this key, we need to send the

public part of it to the server:

Now let's try to login using the private key as an identity file:

ssh user01@localhost 'ls .*'

ssh-keygen --help

ssh-keygen -t ecdsa -q -N '' -f ~/.ssh/key1

ls -al ~/.ssh/key1*

cat ~/.ssh/key1

cat ~/.ssh/key1.pub

ssh-copy-id -i ~/.ssh/key1.pub user01@localhost

ssh -i ~/.ssh/key1 user01@localhost

You may notice that the public key has been appended to

.ssh/authorized_keys on the server.

It gets even better. Let's add this configuration to ~/.ssh/config :

Now we can just use ssh with the name server1 , without having to specify the

hostname (or IP) of the server, the username, the identity file etc. It will get

them automatically from the config file.

ls -al

cat .ssh/authorized_keys

exit

cat ~/.ssh/key1.pub

cat <<EOF >> ~/.ssh/config

Host server1

 HostName 127.0.0.1

 User user01

 IdentityFile ~/.ssh/key1

EOF

cat ~/.ssh/config

ssh server1

exit

3. Using scp , sftp , rsync etc.

All these tools use an SSH tunnel for a secure communication with the server.

Now that we have an easy ssh access to the server, we can also use easily

these tools:

sftp :

ssh server1 whoami

touch foo.txt

scp foo.txt server1:

ssh server1 ls -l

ssh server1 touch bar.txt

ssh server1 ls -l

scp server1:bar.txt .

ls -l bar.txt

sftp server1

ls

rsync :

DOWNLOAD LESSON08/PART3.CAST

help

quit

ls testdir

rsync -av testdir server1:

ssh server1 ls

ssh server1 ls testdir

https://linux-cli.fs.al/assets/files/part3-369d6b0bdb233c69d127ee66335d7f78.cast

Linux Commands Lesson 8 4. Filesystems

4. Filesystems

In this section we will try an example with a CoW (Copy-on-Write) filesystem. CoW

filesystems have the nice property that it is possible to "clone" files instantly, by

having the new file refer to the old blocks, and copying (possibly) changed blocks.

This both saves time and space, and can be very beneficial in a lot of situations (for

example when working with big files). In Linux this type of copy is called "reflink".

We will see how to use it on the XFS filesystem.

1. Create a virtual block device

Linux supports a special block device called the loop device, which maps a normal

file onto a virtual block device. This allows for the file to be used as a "virtual file

system".

INFO

Loop devices are not available on a container, so we need a real machine or a

VM, in order to try this example.

1. Create a file of size 1G:

2. Create a loop device with this file:

fallocate -l 1G disk.img

ls -hl disk.img

du -hs disk.img

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson08

The option -f finds an unused loop device.

3. Find the name of the loop device that was created:

2. Create an XFS filesystem

1. Make sure that the package xfsprogs is installed:

2. Create an XFS filesystem on the image file:

The metadata -m reflink=1 tells the command to enable reflinks, and -L test

sets the label of the filesystem.

3. Create a directory:

4. Mount the loop device on it:

sudo losetup -f disk.img

losetup -a

losetup -a | grep disk.img

lodevice=$(losetup -a | grep disk.img | cut -d: -f1)

sudo apt install xfsprogs

mkfs.xfs -m reflink=1 -L test disk.img

mkdir mnt

5. Check the usage of the filesystem:

Notice that only 40M are used from it.

3. Copy files with '--reflink'

1. Create for testing a file of size 100 MB (with random data):

2. Check that now there are 140M of disk space used:

3. Create a copy of the file (with reflinks enabled):

4. Check the size of each file:

sudo mount /dev/loop0 mnt

sudo mount $lodevice mnt

mount | grep mnt

df -h mnt/

cd mnt/

sudo chown $(whoami): .

dd if=/dev/urandom of=test bs=1M count=100

df -h .

cp -v --reflink=always test test1

Each of them is 100M and in total there are 200M of data.

5. However if we check the disk usage we will see that both of them still take on

disk the same amount of space as before 140M:

This shows the space-saving feature of reflinks. If the file was big enough, we would

have noticed as well that the reflink copy takes no time at all, it is done instantly.

4. Clean up

1. Unmount and delete the test directory mnt/ :

2. Delete the loop device:

3. Remove the file that was used to create the loop device:

DOWNLOAD LESSON08/PART4.CAST

ls -hsl

df -h .

cd ..

sudo umount mnt/

rmdir mnt/

losetup -a

sudo losetup -d /dev/loop0

sudo losetup -d $lodevice

rm disk.img

https://linux-cli.fs.al/assets/files/part4-4443209e3914e5952c30d51e5e628fa0.cast

Linux Commands Lesson 8 5. Package Management

5. Package Management

DOWNLOAD LESSON08/PART5.CAST

sudo apt update

sudo apt upgrade

apt list 'emacs*'

apt show emacs

sudo apt install emacs

emacs

sudo apt remove emacs

https://linux-cli.fs.al/
https://linux-cli.fs.al/commands
https://linux-cli.fs.al/lesson08
https://linux-cli.fs.al/assets/files/part5-ae9d6cad0b4dc7761a88865ff17cb749.cast

🗃️ Lesson 9

5 items

🗃️ Lesson 10

6 items

🗃️ Lesson 11

5 items

🗃️ Lesson 12

6 items

🗃️ Lesson 13

5 items

🗃️ Lesson 14

https://linux-cli.fs.al/lesson09
https://linux-cli.fs.al/lesson10
https://linux-cli.fs.al/lesson11
https://linux-cli.fs.al/lesson12
https://linux-cli.fs.al/lesson13
https://linux-cli.fs.al/lesson14
https://linux-cli.fs.al/lesson14

4 items

🗃️ Lesson 15

4 items

https://linux-cli.fs.al/lesson14
https://linux-cli.fs.al/lesson14
https://linux-cli.fs.al/lesson15

📄️ Intro

Before starting with bash scripting (in the next lesson), we are going

📄️ 1. Vim basics

1. Starting and quitting.

📄️ 2. More Vim commands

2.1 Deleting text

📄️ 3. Editing multiple files

1. It is often useful to edit more than one file at a time.

📄️ 4. Tutorials

1. There is a Vim tutorial that can be started with:

https://linux-cli.fs.al/lesson09/intro
https://linux-cli.fs.al/lesson09/part1
https://linux-cli.fs.al/lesson09/part2
https://linux-cli.fs.al/lesson09/part3
https://linux-cli.fs.al/lesson09/part4

Bash Scripting Lesson 9 Intro

Intro

Before starting with bash scripting (in the next lesson), we are going to make a

quick introduction to the editors Vim and Emacs.

DOWNLOAD LESSON09/INTRO.CAST

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson09
https://linux-cli.fs.al/assets/files/intro-864d7232f9378b0c12d795eaaf67f714.cast

Bash Scripting Lesson 9 1. Vim basics

1. Vim basics

1. Starting and quitting.

The tilde char (~) at the start of a line means that there is no text on that line.

To quit press :q

2. Editing modes.

Let's start it again, passing to it the name of a nonexistent file:

Vim has a command mode and an insert mode. In the command mode the keys

that we type are interpreted as commands. In the insert mode we can add text

to the file.

When it starts up, Vim is in the command mode. To switch the mode to insert

let's give the command: i

Notice the status -- INSERT -- at the bottom.

Now let's enter some text:

vim

rm -f foo.txt

vim foo.txt

The quick brown fox jumped over the lazy dog.

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson09

To exit the insert mode and return to command mode, press: ESC

To save the file type: :w

3. Moving the cursor around.

While in the command mode, we can move with the keys:

h -- left

l -- right

j -- down

k -- up

Press a few times h and l .

We can also use:

0 -- to the beginning of line

$ -- to the end of line

w -- to the beginning of next word or punctuation char

W -- to the beginning of next word (ignore punctuation)

b -- backwards one word or punctuation char

B -- backwards one word (ignore punctuations)

Try them a few times.

If a command is prefixed by a number, it will be repeated that many times. For

example 3w is the same as pressing w 3 times.

We can also use the arrows (left, right, up, down).

4. Basic editing.

With the command i we start inserting text at the current position of the cursor.

To append text after the current position we can use the command a .

Type A to start appending text at the end of the line.

Now type: . It was cool.

Press Enter and continue by adding these lines:

Then press ESC to switch back to command mode, then :w to save (write to

file).

Go to the first line: 1G

Go to the last line: G

Go to the third line: 3G

Then:

Open a new line below the current one: o

Undo: ESC and u

Open a new line above the current one: O

Undo: ESC and u

DOWNLOAD LESSON09/PART1.CAST

Line 2

Line 3

Line 4

Line 5

https://linux-cli.fs.al/assets/files/part1-4bdf688be673650dd072dea456085f86.cast

Bash Scripting Lesson 9 2. More Vim commands

2. More Vim commands

2.1 Deleting text

1. To delete text in Vim we can use the commands x , which deletes the character

at the cursor, and d .

1G5w

2. Press x a few times to delete a few characters, then press u several times to

undo.

Press 3x to delete 3 chars, then u to undo.

3. Try also these and see what they do:

dW and u

5dW and u

d$ and u

d0 and u

dd and u

3dd and u

dG and u

d4G and u

2.2 Cut, copy and paste

1. When we delete some text, it is actually like cut, because the deleted part is

placed on a paste buffer and can be placed somewhere else. To paste it after the

cursor we can use the command p , to paste it before the cursor we can use

capital P .

2. Try:

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson09

5x and p , then uu

3x and P , then uu

5dw , $, p , uu

d$, 0 , p , u , P , uu

dd , p , u , P , uu

3. Instead of d we can use the command y (yank) to copy text.

yw , p , u , P , u

5yw , P , u

yy , p , u

3yy , P , u , p , u

yG , P , u

y$, 0 , P , u

4. To join a line with the next one we can use J :

3G , J , J , uu

2.3 Search and replace

1. To find a character in the current line, press f and the character:

1G , fa , ;

2. To move the cursor to the next occurrence of a word or phrase, the / command

is used. Type a word or phrase after it and then Enter:

/ then type Line

To find the next match press n :

n , n , n

3. To replace (substitute) Line by line in the whole file use:

It is similar to the sed command. It starts with a range of lines where to perform

the substitution. In this example, % denotes the whole file and is the same as

1,$ (from the first line to the last one).

4. We can also ask for confirmation by adding the modifier c at the end:

The confirmation options are:

y -- yes

n -- no

a -- all

q -- quit

l -- last (replace this one and quit)

Ctrl-e / Ctrl-y -- scroll down and up, to see the context

DOWNLOAD LESSON09/PART2.CAST

:% s/Line/line/g

:1,$ s/line/Line/gc

https://linux-cli.fs.al/assets/files/part2-7c42d907da3287bfc807feac6aef9e48.cast

Bash Scripting Lesson 9 3. Editing multiple files

3. Editing multiple files

1. It is often useful to edit more than one file at a time.

Quit from vim:

Let's create another test file:

Start vim with both test files as argument:

To see the list of buffers (opened files):

To switch to the next buffer press :bn . Try it a few times

To switch to the previous buffer press :bp . Try it a few times.

We can also switch to another buffer like this:

:q!

ls -l /usr/bin > ls-output.txt

vim foo.txt ls-output.txt

:buffers

:buffer 2

:buffer 1

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson09

2. It's also possible to add files to the current editing session.

3. While editing multiple files, it is possible to copy a portion of one file into

another file that we are editing. This is easily done using the usual yank and

paste commands.

:buffer 1

1G and yy

:buffer 2

1G and p

:q!

4. It's also possible to insert an entire file into one that we are editing.

:q!

vim foo.txt

:e ls-output.txt

:buffers

vim ls-output.txt

3G

:r foo.txt

We saved the buffer to the file foo1.txt , but we are still editing the first file and

any further modifications will be done to it.

DOWNLOAD LESSON09/PART3.CAST

:w foo1.txt

:q!

https://linux-cli.fs.al/assets/files/part3-5c9c96eee9d11bbb06529953c1c17a56.cast

Bash Scripting Lesson 9 4. Tutorials

4. Tutorials

1. There is a Vim tutorial that can be started with:

2. For an Emacs tutorial, first start emacs with:

Then press Ctrl-h and t . Or move (by the down arrow) to Emacs tutorial and

then press Enter.

3. Some other online tutorials:

https://openvim.com/

https://www.gnu.org/software/emacs/tour/

DOWNLOAD LESSON09/PART4.CAST

vimtutor

emacs -nw

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson09
https://openvim.com/
https://www.gnu.org/software/emacs/tour/
https://linux-cli.fs.al/assets/files/part4-32975bf68c21d916a9efa5db51e95e07.cast

📄️ Intro

In this lesson we will see:

📄️ 1. Create and run a script

1. Let's create a script that prints "Hello World!".

📄️ 2. Starting a project

Before starting, let's get first some [example

📄️ 3. Variables and constants

1. Variables in bash don't have to be declared, we just use them:

📄️ 4. Here documents

A here document is an additional form of I/O redirection in which we

📄️ 5. Shell functions

https://linux-cli.fs.al/lesson10/intro
https://linux-cli.fs.al/lesson10/part1
https://linux-cli.fs.al/lesson10/part2
https://linux-cli.fs.al/lesson10/part3
https://linux-cli.fs.al/lesson10/part4
https://linux-cli.fs.al/lesson10/part5
https://linux-cli.fs.al/lesson10/part5

Functions can be declared in one of these two forms, which are

https://linux-cli.fs.al/lesson10/part5
https://linux-cli.fs.al/lesson10/part5

Bash Scripting Lesson 10 Intro

Intro

In this lesson we will see:

how to create and run a bash script

how to output some text from a bash script

bash script variables, constants and functions

DOWNLOAD LESSON10/INTRO.CAST

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson10
https://linux-cli.fs.al/assets/files/intro-7cd0d2dbf04ac33e1656ca799fbd008a.cast

Bash Scripting Lesson 10 1. Create and run a script

1. Create and run a script

1. Let's create a script that prints "Hello World!".

Press i then type this code:

Press ESC then type :wq to save and quit.

We are sending it to bash , and bash is interpreting and executing the

commands inside the script.

2. We can tell the shell to use Bash for interpreting this script by adding

#!/bin/bash as the first line of the script.

vim hello.sh

echo "Hello World!"

echo "This is the first script."

ls -l hello.sh

cat hello.sh

cat hello.sh | bash

bash hello.sh

vim hello.sh

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson10

Press 1G , O , and then type #!/bin/bash .

Press ESC, :wq and Enter, to save and quit.

The script now should look like this:

If it was a Python script, we would have used instead the line

#!/usr/bin/python3 to tell the shell that it should use Python for

interpreting this script.

The character # is usually called hash, and ! is usually called bang.

Together they are called shebang and they are placed at the very beginning

of a script (no empty lines and no empty spaces before them). After the

shebang comes the program that the shell should use to interpret the script.

3. Let's try to execute it:

It says command not found . This is because the shell looks for this command in

certain directories, which are listed on the environment variable PATH :

cat hello.sh

#!/bin/bash

echo "Hello World!"

echo "This is the first script."

The shebang

hello.sh

echo $PATH

There is no command hello.sh in any of these directories, so shell cannot find

such a command.

To fix this problem, we can tell bash the path of the command, like this:

When we give a path to the command (./ in this case), the shell does not use

the variable PATH but tries to find the command in the given path.

Another way for fixing the problem is to add the current directory to the

PATH , like this:

Then the shell will be able to find hello.sh even if we don't specify its path:

4. Now, when we try to execute the script, it gives the error message Permission

denied , because the script is not executable. Let's fix this by giving it the x

permission, and try again:

./hello.sh

Modifying PATH

echo $PATH

PATH="$(pwd):$PATH"

echo $PATH

hello.sh

ls -l hello.sh

chmod +x hello.sh

ls -l hello.sh

5. In bash, comments are denoted by a # . Everything after a # is considered a

comment and is ignored:

Let's modify the script by adding some comments, and execute it again, to

verify that the comments are just ignored by the interpreter.

Type 1G , o and then enter # This is a comment. on the second line.

Press ESC, j , A and append # this is another comment on the third line.

Press ESC, then :wq and Enter, to save and quit.

The script now should look like this:

Let's execute it and make sure that the comments are just ignored:

./hello.sh

ls -l hello.sh # this is a comment and will be ignored

This is also a comment.

vim hello.sh

cat hello.sh

#!/bin/bash

This is a comment.

echo "Hello World!" # this is another comment

echo "This is the first script."

./hello.sh

DOWNLOAD LESSON10/PART1.CAST

https://linux-cli.fs.al/assets/files/part1-33ac8146589c50414dc7dffaa1e6a173.cast

Bash Scripting Lesson 10 2. Starting a project

2. Starting a project

NOTE

Before starting, let's get first some example files:

We will start to write a script that generates a report about various status and

statistics of the system. This report will be in the HTML format.

1. The first step is to write a program (script) that outputs a basic HTML page to

the standard output. An example of a basic HTML page is on the file page.html :

Type q and y to quit.

mkdir -p examples

cd examples/

wget https://linux-cli.fs.al/examples/lesson10.tgz

tar xfz lesson10.tgz

cd lesson10/

ls

cat page.html

lynx page.html

mv page.html sys_info.sh

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson10
https://linux-cli.fs.al/examples/lesson10.tgz

Type 1G , then capital O , and write these lines:

Press ESC and type :wq .

Type q and y to quit.

2. We can make this script more simple and clear by using a single echo :

vim sys_info.sh

:1,$ s/^/echo "/

:% s/$/"/

#!/bin/bash

Program to output a system information page

chmod +x sys_info.sh

./sys_info.sh

./sys_info.sh > sys_info.html

lynx sys_info.html

vim sys_info.sh

A quoted string may contain newlines, and therefore contain multiple lines of

text.

3. Let's put some data on the report:

4. We can use a variable to avoid the repetition of the text "System Information

Report":

:6,$ s/echo "//

:5,$-1 s/"$//

:wq

./sys_info.sh

vim sys_info.sh

:% s/Page Title/System Information Report/

:% s#Page body#<h1>System Information Report</h1>#

:wq

./sys_info.sh

vim sys_info.sh

Press capital O to open a new line above and write:

Press ESC and type :wq .

DOWNLOAD LESSON10/PART2.CAST

:% s/System Information Report/$title/

/echo

title="System Information Report"

./sys_info.sh

https://linux-cli.fs.al/assets/files/part2-69f7aa7d031b438279a515ef56760757.cast

Bash Scripting Lesson 10 3. Variables and constants

3. Variables and constants

1. Variables in bash don't have to be declared, we just use them:

We have a shell expansion here, and it is the same as: echo yes

It is the first time that the shell sees the variable foo1 , however it does not

complain but just creates it and gives it an empty value. This means that we

should be careful with spelling the names of the variables, otherwise we may

get strange results.

We have misspelled the second argument, so shell expands it to an empty string

and we get an error from cp .

foo="yes"

echo $foo

echo $foo1

touch foo.txt

foo=foo.txt

foo1=foo1.txt

cp $foo $fool

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson10

2. To denote constants in bash, we use uppercase variable names, by convention:

We have also used the environment variable HOSTNAME . Environment variables

are considered as constants, so they are in uppercase.

Actually, there is a way to make sure that a variable cannot be changed (is a

constant), although it is not used frequently:

vim sys_info.sh

:% s/$title/$TITLE/g

:% s/title=/TITLE=/

:/^TITLE=/ s/Report/Report for $HOSTNAME/

:wq

./sys_info.sh

sed -i sys_info.sh -e 's/TITLE=/declare -r TITLE=/'

cat sys_info.sh

highlight -O xterm256 sys_info.sh

./sys_info.sh

The option -r of declare means "read-only". So, we cannot assign a value

again to this variable.

3. When a value is assigned to a variable there should be no spaces around the

equal sign:

Shell expansions are applied to the value, before assignment:

a=z

echo $a

b="a string"

c="a string and $b"

echo $c

d=$(ls -l foo.txt)

echo $d

e=$((5 * 7))

echo $e

f="\t\ta string\n"

Multiple assignments may be done on a single line:

4. During expansion, variable names may be surrounded by curly braces {} , which

are necessary in some cases. For example:

What we want is to rename the file to myfile1 , but the shell is interpreting

filename1 as a variable, which of course has not been assigned yet and is

empty. We should do it like this

echo $f

echo -e $f

help echo

a=5 b="a string"

echo $a $b

filename="myfile"

touch $filename

mv $filename $filename1

mv $filename ${filename}1

5. Let's add a timestamp to the report, using variables/constants:

Type o and enter below:

Press ESC and then :w to save.

Type Yp to copy and paste the current line.

ls -l myfile1

date +"%x %r %Z"

echo $USER

vim sys_info.sh

/TITLE=

CURRENT_TIME=$(date +"%x %r %Z")

TIMESTAMP="Generated on $CURRENT_TIME, by $USER"

/<h1>

:s/h1/p/g

:s/TITLE/TIMESTAMP/

:wq

6.

TIP

./sys_info.sh

The script so far should look like this:

#!/bin/bash

Program to output a system information page.

declare -r TITLE="System Information Report for $HOSTNAME"

CURRENT_TIME=$(date +"%x %r %Z")

TIMESTAMP="Generated on $CURRENT_TIME, by $USER"

echo "<html>

 <head>

 <title>$TITLE</title>

 </head>

 <body>

 <h1>$TITLE</h1>

 <p>$TIMESTAMP</p>

 </body>

</html>"

The output of the script should look like this:

<html>

 <head>

 <title>System Information Report for linuxmint</title>

 </head>

 <body>

 <h1>System Information Report for linuxmint</h1>

 <p>Generated on 09/28/23 07:21:03 AM UTC, by

DOWNLOAD LESSON10/PART3.CAST

dashamir</p>

 </body>

</html>

https://linux-cli.fs.al/assets/files/part3-20b3ee2e10fbd3c2742e7d49a9cd9dcb.cast

Bash Scripting Lesson 10 4. Here documents

4. Here documents

A here document is an additional form of I/O redirection in which we embed a body

of text into our script and feed it into the standard input of a command. It works like

this:

where command is a command that accepts standard input and token is a string

used to indicate the end of the embedded text. It should be at the beginning of the

line and should have no trailing spaces.

1. Let's modify the script to use a here document:

Press capital O and type:

Press ESC and then G and o to go to the end of the buffer and open a new line.

Then type:

command << token

.

text

.

token

vim sys_info.sh

/echo

cat << _EOF_

EOF

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson10

Press ESC and give this substitute command:

Instead of using echo , the script now uses cat and a here document.

:%s/echo "//

Gk$x

:wq

The script now should look like this:

#!/bin/bash

Program to output a system information page.

declare -r TITLE="System Information Report for $HOSTNAME"

CURRENT_TIME=$(date +"%x %r %Z")

TIMESTAMP="Generated on $CURRENT_TIME, by $USER"

cat << _EOF_

<html>

 <head>

 <title>$TITLE</title>

 </head>

 <body>

 <h1>$TITLE</h1>

 <p>$TIMESTAMP</p>

 </body>

</html>

EOF

./sys_info.sh

2. The advantage of a here document is that inside the text we can freely use

single and double quotes, since they are not interpreted by the shell as

delimiters of a string. For example:

The shell treats the quotation marks as ordinary characters.

3. We also notice that the variables inside the text are expanded. To prevent

variable expansion we can enclose the token in quotes:

4. Here documents can be used with any command that accepts standard input.

For example we can use it with ftp to retrieve a file:

foo="some text"

cat << EOF

$foo

"$foo"

'$foo'

\$foo

EOF

cat << "EOF"

$foo

"$foo"

'$foo'

\$foo

EOF

cat << 'EOF'

$foo

"$foo"

'$foo'

\$foo

EOF

If we change the redirection operator from << to <<- , the shell will ignore the

leading tab characters in the here document. This allows a here document to be

indented, which can improve readability.

ftp1.sh

#!/bin/bash

Script to retrive a file via FTP

FTP_SERVER=ftp.nl.debian.org

FTP_PATH=/debian/dists/bookworm/main/installer-

amd64/current/images/cdrom/

REMOTE_FILE=debian-cd_info.tar.gz

ftp -n << _EOF_

open $FTP_SERVER

user anonymous me@linuxbox

cd $FTP_PATH

get $REMOTE_FILE

bye

EOF

ls -l $REMOTE_FILE

vim ftp1.sh

:q!

./ftp1.sh

ftp2.sh

DOWNLOAD LESSON10/PART4.CAST

#!/bin/bash

Script to retrive a file via FTP

FTP_SERVER=ftp.nl.debian.org

FTP_PATH=/debian/dists/bookworm/main/installer-

amd64/current/images/cdrom/

REMOTE_FILE=debian-cd_info.tar.gz

ftp -n <<- _EOF_

open $FTP_SERVER

user anonymous me@linuxbox

cd $FTP_PATH

get $REMOTE_FILE

bye

EOF

ls -l $REMOTE_FILE

vim ftp2.sh

:q!

./ftp2.sh

https://linux-cli.fs.al/assets/files/part4-231e733204930d0f96138d5a7d91d9a4.cast

Bash Scripting Lesson 10 5. Shell functions

5. Shell functions

Functions can be declared in one of these two forms, which are equivalent:

1. A simple example of a function is in the script fun.sh :

function name {

 commands

 return

}

name () {

 commands

 return

}

fun.sh

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson10

2. Inside a function we can use local variables:

#!/bin/bash

Shell function demo

function step2() {

 echo "Step 2"

 return

}

Main program starts here

echo "Step 1"

step2

echo "Step 3"

vim fun.sh

:q!

./fun.sh

local-vars.sh

#!/bin/bash

Script to demonstrate local variables

foo=0 # global variable foo

funct_1 () {

3. Let's display some additional info on the report page, using functions. We would

like to display info about:

System uptime and load.

Disk space.

Home space.

Let's define a function for each of these:

 local foo # variable foo local to func_1

 foo=1

 echo "funct_1: foo = $foo"

}

funct_2 () {

 local foo # variable foo local to func_2

 foo=2

 echo "funct_2: foo = $foo"

}

echo "global: foo = $foo"

funct_1

echo "global: foo = $foo"

funct_2

echo "global: foo = $foo"

vim local-vars.sh

:q!

./local-vars.sh

Press capital O and input:

Press ESC and :w

Let's call these functions inside the html body:

Press lowercase o and type:

Press ESC and :wq

vim sys_info.sh

/cat

report_uptime () {

 return

}

report_disk_space () {

 return

}

report_home_space () {

 return

}

/TIMESTAMP

$(report_uptime)

$(report_disk_space)

$(report_home_space)

The script should look like this:

!/bin/bash

Program to output a system information page.

declare -r TITLE="System Information Report for $HOSTNAME"

CURRENT_TIME=$(date +"%x %r %Z")

TIMESTAMP="Generated on $CURRENT_TIME, by $USER"

report_uptime() {

 return

}

report_disk_space() {

 return

}

report_home_space() {

 return

}

cat << _EOF_

<html>

 <head>

 <title>$TITLE</title>

 </head>

 <body>

 <h1>$TITLE</h1>

 <p>$TIMESTAMP</p>

$(report_uptime)

$(report_disk_space)

$(report_home_space)

 </body>

</html>

EOF

./sys_info.sh

4. We see that each function is replaced by an empty line and we don't know what

is going on. Let's display some feedback from each function:

Press o and insert this line:

Press ESC and then search:

The output should look like this:

<html>

 <head>

 <title>System Information Report for linuxmint</title>

 </head>

 <body>

 <h1>System Information Report for linuxmint</h1>

 <p>Generated on 09/28/23 03:01:28 PM UTC, by

dashamir</p>

 </body>

</html>

vim sys_info.sh

/^report_uptime

echo "Function report_uptime executed."

/^report_disk_space

Press o and insert this line:

Press ESC and then search:

Press o and insert this line:

Press ESC and :wq

echo "Function report_disk_space executed."

/^report_home_space

echo "Function report_home_space executed."

The functions should look like this:

report_uptime() {

 echo "Function report_uptime executed."

 return

}

report_disk_space() {

 echo "Function report_disk_space executed."

 return

}

report_home_space() {

 echo "Function report_home_space executed."

 return

}

5. Now let's provide the real data:

./sys_info.sh

The output should look like this:

<html>

 <head>

 <title>System Information Report for linuxmint</title>

 </head>

 <body>

 <h1>System Information Report for linuxmint</h1>

 <p>Generated on 09/28/23 03:13:29 PM UTC, by

dashamir</p>

Function report_uptime executed.

Function report_disk_space executed.

Function report_home_space executed.

 </body>

</html>

uptime

df -h .

du -hs $HOME

vim sys_info.sh

/^report_uptime

Type: j dd O .

CAUTION

Use TAB to indent the lines below cat .

Press ESC.

Type: j dd O .

Press ESC.

Type: j dd O .

cat <<- _EOF_

 <h2>System Uptime</h2>

 <pre>$(uptime)</pre>

 EOF

/^report_disk_space

cat <<- _EOF_

 <h2>Disk Space Utilization</h2>

 <pre>$(df -h .)</pre>

 EOF

/^report_home_space

cat <<- _EOF_

 <h2>Home Space Utilization</h2>

 <pre>$(du -hs $HOME)</pre>

 EOF

Press ESC and :wq

6. Check it in browser:

The functions should look like this:

report_uptime() {

 cat <<- _EOF_

 <h2>System Uptime</h2>

 <pre>$(uptime)</pre>

 EOF

 return

}

report_disk_space() {

 cat <<- _EOF_

 <h2>Disk Space Utilization</h2>

 <pre>$(df -h .)</pre>

 EOF

 return

}

report_home_space() {

 cat <<- _EOF_

 <h2>Home Space Utilization</h2>

 <pre>$(du -hs $HOME)</pre>

 EOF

 return

}

./sys_info.sh

./sys_info.sh > sys_info.html

Quit with qy .

DOWNLOAD LESSON10/PART5.CAST

lynx sys_info.html

https://linux-cli.fs.al/assets/files/part5-7775dcc4819adb9b509c59f1447889db.cast

📄️ Intro

In this lesson we will see:

📄️ 1. Branching with if

The if statement has the following syntax:

📄️ 2. More testing constructions

1. The compound command [[expression]]

📄️ 3. Reading keyboard input

1. The script test-integer2.sh, that we have seen previously, has

📄️ 4. Examples

1. Let's see an example program that validates its input:

https://linux-cli.fs.al/lesson11/intro
https://linux-cli.fs.al/lesson11/part1
https://linux-cli.fs.al/lesson11/part2
https://linux-cli.fs.al/lesson11/part3
https://linux-cli.fs.al/lesson11/part4

Bash Scripting Lesson 11 Intro

Intro

In this lesson we will see:

how to branch with if

reading keyboard input

NOTE

Before starting, let's get first some examples:

DOWNLOAD LESSON11/INTRO.CAST

mkdir -p examples && cd examples/

wget https://linux-cli.fs.al/examples/lesson11.tgz

tar xfz lesson11.tgz

cd lesson11/ && ls

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson11
https://linux-cli.fs.al/examples/lesson11.tgz
https://linux-cli.fs.al/assets/files/intro-02aa94b2748774eb8a791cae30d73f8d.cast

Bash Scripting Lesson 11 1. Branching with if

1. Branching with if

The if statement has the following syntax:

The elif and else parts are optional. The elif part can be repeated more than

once.

1. Commands (including the scripts and shell functions) return an exit status. By

convention, an exit status of zero indicates success and any other value

indicates failure.

if commands; then

 #commands

 #...

elif commands; then

 #commands

 #...

else

 #commands

 #...

fi

ls -d /usr/bin

echo $?

ls -d /bin/usr

echo $?

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson11

The builtin commands true and false do nothing except returning an exit

status:

2. The if statement evaluates the success or failure of the commands, based on

their exit status:

If a list of commands follows if , the last command in the list is evaluated:

3. The command used most frequently with if is test , which performs a variety

of checks and comparisons.

true

echo $?

false

echo $?

if true; then echo "It's true."; fi

if false; then echo "It's true."; fi

if false; true; then echo "It's true."; fi

if true; false; then echo "It's true."; fi

touch foo.txt

The command [is equivalent to test (it requires] as the last argument).

4. Let's see an example script that is testing files:

if test -e foo.txt; then echo "File exists"; fi

if [-e foo.txt]; then echo "File exists"; \

 else echo "File does not exist"; fi

rm -f foo.txt

if [-e foo.txt]; then echo "File exists"; \

 else echo "File does not exist"; fi

test-file.sh

#!/bin/bash

test-file: Evaluate the status of a file

FILE=~/.bashrc

if [-e "$FILE"]; then

 if [-f "$FILE"]; then

 echo "$FILE is a regular file."

 fi

 if [-d "$FILE"]; then

 echo "$FILE is a directory."

 fi

 if [-r "$FILE"]; then

 echo "$FILE is readable."

 fi

 if [-w "$FILE"]; then

 echo "$FILE is writable."

Notice that the parameter $FILE is quoted within the expression. This is not

required, but it is a defense against the parameter being empty or containing

whitespace.

Notice also the exit command at the end. It can optionally take a number as an

argument, which becomes the exit status of the script, indicating success or

failure. Without an argument, the default is the exit status of the last command

executed. If the command exit is not present at all, the exit status of the script

will be the exit status of the last command executed.

Edit the script, change the variable FILE and execute it again. You can also try

to set it to the name of a directory.

 fi

 if [-x "$FILE"]; then

 echo "$FILE is executable/searchable."

 fi

else

 echo "$FILE does not exist"

 exit 1

fi

exit

vim test-file.sh

./test-file.sh

Let's do some more testing

sed -i test-file.sh \

 -e '/^FILE=/c FILE=./test-file.sh'

5. Let's see a similar example that uses a function instead:

head test-file.sh

./test-file.sh

sed -i test-file.sh \

 -e '/^FILE=/c FILE=~/examples/'

head test-file.sh

./test-file.sh

sed -i test-file.sh \

 -e '/^FILE=/c FILE="non existent file"'

head test-file.sh

./test-file.sh

test-file-fun.sh

#!/bin/bash

FILE=~/.bashrc

test-file: Evaluate the status of a file

test_file () {

 if [-e "$FILE"]; then

 if [-f "$FILE"]; then

 echo "$FILE is a regular file."

 fi

 if [-d "$FILE"]; then

 echo "$FILE is a directory."

 fi

 if [-r "$FILE"]; then

 echo "$FILE is readable."

 fi

 if [-w "$FILE"]; then

 echo "$FILE is writable."

Notice that instead of exit , a function can use return to indicate the exit

status of the function.

 fi

 if [-x "$FILE"]; then

 echo "$FILE is executable/searchable."

 fi

 else

 echo "$FILE does not exist"

 return 1

 fi

}

test_file

vim test-file-fun.sh

./test-file-fun.sh

Let's do some more testing

sed -i test-file-fun.sh \

 -e '/^FILE=/c FILE=./test-file.sh'

grep '^FILE=' test-file-fun.sh

./test-file-fun.sh

sed -i test-file-fun.sh \

 -e '/^FILE=/c FILE=~/examples/'

grep '^FILE=' test-file-fun.sh

./test-file-fun.sh

6. An example with testing strings:

sed -i test-file-fun.sh \

 -e '/^FILE=/c FILE="non existent file"'

grep '^FILE=' test-file-fun.sh

./test-file-fun.sh

test-string.sh

#!/bin/bash

test-string: evaluate the value of a string

ANSWER=maybe

if [-z "$ANSWER"]; then

 echo "There is no answer." >&2

 exit 1

fi

if ["$ANSWER" = "yes"]; then

 echo "The answer is YES."

elif ["$ANSWER" = "no"]; then

 echo "The answer is NO."

elif ["$ANSWER" = "maybe"]; then

 echo "The answer is MAYBE."

else

 echo "The answer is UNKNOWN."

fi

vim test-string.sh

Notice that when there is an error (ANSWER is empty), we print the error

message to stderr by redirecting the output of echo (>&2). We also return an

exit code of 1 by exit 1 .

7. A similar example with testing integers:

./test-string.sh

Let's do some more testing

sed -i test-string.sh -e '/^ANSWER=/c ANSWER=yes'

./test-string.sh

sed -i test-string.sh -e '/^ANSWER=/c ANSWER=no'

./test-string.sh

sed -i test-string.sh -e '/^ANSWER=/c ANSWER=xyz'

./test-string.sh

sed -i test-string.sh -e '/^ANSWER=/c ANSWER='

./test-string.sh

test-integer.sh

#!/bin/bash

test-integer: evaluate the value of an integer.

INT=-5

if [-z "$INT"]; then

 echo "INT is empty." >&2

 exit 1

Change the number that is assigned to INT and execute it again.

fi

if ["$INT" -eq 0]; then

 echo "INT is zero."

else

 if ["$INT" -lt 0]; then

 echo "INT is negative."

 else

 echo "INT is positive."

 fi

 if [$((INT % 2)) -eq 0]; then

 echo "INT is even."

 else

 echo "INT is odd."

 fi

fi

vim test-integer.sh

./test-integer.sh

More testing

sed -i test-integer.sh -e '/^INT=/c INT=11'

./test-integer.sh

sed -i test-integer.sh -e '/^INT=/c INT='

./test-integer.sh

sed -i test-integer.sh -e '/^INT=/c INT=0'

./test-integer.sh

8. For more details about the available tests let's see the help:

DOWNLOAD LESSON11/PART1.CAST

sed -i test-integer.sh -e '/^INT=/c INT=12'

./test-integer.sh

help test | less

help [

type test

type [

https://linux-cli.fs.al/assets/files/part1-ca28576e98c2bfc5d310b0edf1794821.cast

Bash Scripting Lesson 11 2. More testing constructions

2. More testing constructions

1. The compound command [[expression]]

Modern versions of bash include a compound command that acts as an

enhanced replacement for test: [[expression]] . It has also an operator for

regular expression matching: =~ .

test-integer2.sh

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson11

#!/bin/bash

test-integer2: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then

 if ["$INT" -eq 0]; then

 echo "INT is zero."

 else

 if ["$INT" -lt 0]; then

 echo "INT is negative."

 else

 echo "INT is positive."

 fi

 if [$((INT % 2)) -eq 0]; then

 echo "INT is even."

 else

 echo "INT is odd."

 fi

 fi

else

 echo "INT is not an integer." >&2

 exit 1

fi

vim test-integer2.sh

./test-integer2.sh

More testing

Another added feature of [[]] is that the == operator supports pattern

matching the same way pathname expansion does:

2. The compound command ((integer expression))

In addition to the compound command [[]] , bash also provides the compound

command (()) , which is useful for operating on integers.

With this test command we can simplify a bit the previous example script:

sed -i test-integer2.sh -e '/^INT=/c INT=11'

./test-integer2.sh

sed -i test-integer2.sh -e '/^INT=/c INT='

./test-integer2.sh

sed -i test-integer2.sh -e '/^INT=/c INT=0'

./test-integer2.sh

sed -i test-integer2.sh -e '/^INT=/c INT=12'

./test-integer2.sh

FILE=foo.bar

if [[$FILE == foo.*]]; \

 then echo "$FILE matches pattern 'foo.*'"; fi

if ((1)); then echo "It is true."; fi

if ((0)); then echo "It is true."; fi

if ((2)); then echo "It is true."; fi

test-integer2a.sh

#!/bin/bash

test-integer2a: evaluate the value of an integer.

INT=-5

if [["$INT" =~ ^-?[0-9]+$]]; then

 if ((INT == 0)); then

 echo "INT is zero."

 else

 if ((INT < 0)); then

 echo "INT is negative."

 else

 echo "INT is positive."

 fi

 if ((((INT % 2)) == 0)); then

 echo "INT is even."

 else

 echo "INT is odd."

 fi

 fi

else

 echo "INT is not an integer." >&2

 exit 1

fi

vim test-integer2a.sh

./test-integer2a.sh

diff -u test-integer2.sh test-integer2a.sh \

Notice that we don't use a $ sign to refer to variables inside (()) . Also,

instead of -eq we use the operator == , instead of -lt we use < , etc. This

makes the syntax a bit more natural.

3. We can use logical operators to create complex expressions. For the test (and

[]) command the logical operators are -a (AND), -o (OR) and ! (NOT). For

the commands [[]] and (()) they are: && , || and ! .

 | highlight -S bash -O xterm256 2>/dev/null

test-integer3.sh

#!/bin/bash

test-integer3: determine if an integer is within a

specified range of values.

MIN_VAL=1

MAX_VAL=100

INT=50

if [[! "$INT" =~ ^-?[0-9]+$]]; then

 echo "INT is not an integer." >&2

 exit 1

fi

if [["$INT" -ge "$MIN_VAL" && "$INT" -le "$MAX_VAL"]]; then

 echo "$INT is within $MIN_VAL to $MAX_VAL."

else

 echo "$INT is out of range."

fi

echo -n "Using [[...]]: "

if [[! ("$INT" -ge "$MIN_VAL" && "$INT" -le "$MAX_VAL")]];

then

 echo "$INT is outside $MIN_VAL to $MAX_VAL."

else

 echo "$INT is in range."

The option -n of the command echo tells it to not print a newline after the

string.

Notice that because test and [are treated as commands (unlike [[and ((

which are special shell constructs), each argument given to them has to be

separated by a space. Also, the parentheses that group logical expressions have

to be escaped like this: \(and \) , otherwise shell will interpret them as

something else (they have a special meaning in shell).

Usually it is more convenient to use [[instead of test or [.

4. We can use the operators && (AND) and || (OR) for conditional execution of a

command. They can be used like this:

command1 && command2

fi

echo -n "Using ((...)): "

if ((! (INT > MIN_VAL && INT < MAX_VAL))); then

 echo "$INT is outside $MIN_VAL to $MAX_VAL."

else

 echo "$INT is in range."

fi

echo -n "Using [...] : "

if [! \("$INT" -ge "$MIN_VAL" -a "$INT" -le "$MAX_VAL" \)];

then

 echo "$INT is outside $MIN_VAL to $MAX_VAL."

else

 echo "$INT is in range."

fi

vim test-integer3.sh

./test-integer3.sh

First is executed command1 . If (and only if) it is successful, the command2 is

executed as well.

command1 || command2

First is executed command1 . If (and only if) it fails, the command2 is executed as

well.

For example:

The first one is equivalent to:

The second one is equivalent to:

The command : is a null command, which means "do nothing". Without it we

would get a syntax error.

DOWNLOAD LESSON11/PART2.CAST

mkdir temp && cd temp

[[-d temp]] || mkdir temp

if mkdir temp; then cd temp; fi

if [[-d temp]]; then : ; else mkdir temp; fi

https://linux-cli.fs.al/assets/files/part2-c611b04f34078a8fb3ac30b7456247f1.cast

Bash Scripting Lesson 11 3. Reading keyboard input

3. Reading keyboard input

1. The script test-integer2.sh , that we have seen previously, has the value of

INT hardcoded, so that we need to edit the script in order to test another value.

We can make it more interactive by using the command read :

read-integer.sh

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson11

#!/bin/bash

read-integer: evaluate the value of an integer.

echo -n "Please enter an integer -> "

read int

if [[! "$int" =~ ^-?[0-9]+$]]; then

 echo "Input value is not an integer." >&2

 exit 1

fi

if ((int == 0)); then

 echo "$int is zero."

else

 if ((int < 0)); then

 echo "$int is negative."

 else

 echo "$int is positive."

 fi

 if ((((int % 2)) == 0)); then

 echo "$int is even."

 else

 echo "$int is odd."

 fi

fi

vim read-integer.sh

./read-integer.sh # enter 0

./read-integer.sh # enter 7

The command read assigns the input to the variable int . If no variable name is

given, then it assigns the input to the variable REPLY .

2. The command read can also get multiple variable names, as in this example:

In this script, we assign and display up to five values.

./read-integer.sh # enter 4

./read-integer.sh # enter -3

./read-integer.sh # enter -8

read-multiple.sh

#!/bin/bash

read-multiple: read multiple values from keyboard

echo -n "Enter one or more values > "

read var1 var2 var3 var4 var5

echo "var1 = '$var1'"

echo "var2 = '$var2'"

echo "var3 = '$var3'"

echo "var4 = '$var4'"

echo "var5 = '$var5'"

vim read-multiple.sh

3. It can also get some options:

With the -p option we can provide a prompt string:

The option -s can be used for a silent input, and -t to set a timeout. Let's see

them in an example that tries to read a password:

./read-multiple.sh # enter: a b c d e

./read-multiple.sh # enter: a b

./read-multiple.sh # enter: a b c d e f g

help read | less

read -p "Enter one or more values > " # enter: a b c

echo "REPLY = '$REPLY'"

read-user-pass.sh

#!/bin/bash

-e: use readline to get the input

-p: display a prompt

-i: provide a default reply

read -e -p "What is your user name > " -i $USER username

echo "Welcome '$username'"

-t: timeout (in seconds)

-s: silent (do not echo characters to the display as they are

If we don't type a password in 10 seconds, the read command will time out with

an error exit code.

4. The input provided to read is split by the shell. There is a shell variable named

IFS (Internal Field Separator) which contains a list of separators. By default it

contains a space, a tab, and a newline character. Each of them can separate

items from each-other.

If we want to modify the way that the input is separated into fields, we can

change the value of IFS .

typed)

-p: display a prompt

if read -t 10 -sp "Enter your secret passphrase > " secret_pass

then

 echo -e "\nYour secret passphrase is '$secret_pass'"

else

 echo -e "\nInput timed out" >&2

 exit 1

fi

vim read-user-pass.sh

./read-user-pass.sh

read-ifs.sh

#!/bin/bash

read-ifs: read fields from a file

read -p "Enter a username > " user_name

file_info="$(grep "^$user_name:" /etc/passwd)"

Notice that we set IFS=":" before calling read . The shell allows one or more

variable assignments to take place immediately before a command. These

assignments alter the environment for the command that follows. The effect of

the assignment is temporary changing the environment, for the duration of the

command.

It is the same as doing this, but more concise:

The <<< operator indicates a here string. A here string is like a here document,

only shorter, consisting of a single string. We need to use it because read does

not work well with a pipe (for example: echo "$file_info" | read ...)

if [-z "$file_info"]; then

 echo "No such user '$user_name'" >&2

 exit 1

fi

IFS=":" read user pw uid gid name home shell <<< "$file_info"

echo "User = '$user'"

echo "UID = '$uid'"

echo "GID = '$gid'"

echo "Full Name = '$name'"

echo "Home Dir = '$home'"

echo "Shell = '$shell'"

vim read-ifs.sh

OLD_IFS="$IFS"

IFS=":"

read user pw uid gid name home shell <<< "$file_info"

IFS="$OLD_IFS"

./read-ifs.sh # enter: xyz

DOWNLOAD LESSON11/PART3.CAST

./read-ifs.sh # enter: user1

https://linux-cli.fs.al/assets/files/part3-617dc5aa7dcc82d326e3a42cc7426b38.cast

Bash Scripting Lesson 11 4. Examples

4. Examples

1. Let's see an example program that validates its input:

validate.sh

#!/bin/bash

read-validate: validate input

invalid_input () {

 echo "Invalid input '$REPLY'" >&2

 exit 1

}

read -p "Enter a single item > "

input is empty (invalid)

[[-z "$REPLY"]] && invalid_input

input is multiple items (invalid)

(("$(echo "$REPLY" | wc -w)" > 1)) && invalid_input

is input a valid filename?

if [["$REPLY" =~ ^[-[:alnum:]\._]+$]]; then

 echo "'$REPLY' is a valid filename."

 if [[-e "$REPLY"]]; then

 echo "And file '$REPLY' exists."

 else

 echo "However, file '$REPLY' does not exist."

 fi

 # is input a floating point number?

 if [["$REPLY" =~ ^-?[[:digit:]]*\.[[:digit:]]+$]]; then

 echo "'$REPLY' is a floating point number."

 else

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson11

Try it a few times with different inputs:

2. Let's see a menu driven example program:

 echo "'$REPLY' is not a floating point number."

 fi

 # is input an integer?

 if [["$REPLY" =~ ^-?[[:digit:]]+$]]; then

 echo "'$REPLY' is an integer."

 else

 echo "'$REPLY' is not an integer."

 fi

else

 echo "The string '$REPLY' is not a valid filename."

fi

vim validate.sh

./validate.sh

menu.sh

#!/bin/bash

read-menu: a menu driven system information program

clear

echo "

Please Select:

1. Display System Information

2. Display Disk Space

3. Display Home Space Utilization

0. Quit

"

Notice the use of the exit command in this script. It is used here to prevent the

script from executing unnecessary code after an action has been carried out.

read -p "Enter selection [0-3] > "

if [[! "$REPLY" =~ ^[0-3]$]]; then

 echo "Invalid entry." >&2

 exit 1

fi

if [["$REPLY" == 0]]; then

 echo "Program terminated."

 exit

fi

if [["$REPLY" == 1]]; then

 echo "Hostname: $HOSTNAME"

 uptime

 exit

fi

if [["$REPLY" == 2]]; then

 df -h .

 exit

fi

if [["$REPLY" == 3]]; then

 if [["$(id -u)" -eq 0]]; then

 echo "Home Space Utilization (All Users)"

 du -sh /home/*

 else

 echo "Home Space Utilization ($USER)"

 du -sh "$HOME"

 fi

 exit

fi

vim menu.sh

Try if a few times.

3. As an exercise, try to modify these examples so that instead of [[...]] and

((...) , they use the command test .

Hint: Use grep to evaluate the regular expressions and evaluate the exit status.

DOWNLOAD LESSON11/PART4.CAST

https://linux-cli.fs.al/assets/files/part4-efe53f38f73e04cd65dea2b8755a4cd6.cast

📄️ Intro

In this lesson we will see:

📄️ 1. Looping with while and until

The syntax of the while command is as follows:

📄️ 2. Branching with case

The command case is a multiple-choice command.

📄️ 3. Positional parameters

1. The shell provides a set of variables called _positional

📄️ 4. An example

Let's try to improve the program sys_info.sh, that we started to

📄️ 5. Testing the example

https://linux-cli.fs.al/lesson12/intro
https://linux-cli.fs.al/lesson12/part1
https://linux-cli.fs.al/lesson12/part2
https://linux-cli.fs.al/lesson12/part3
https://linux-cli.fs.al/lesson12/part4
https://linux-cli.fs.al/lesson12/part5
https://linux-cli.fs.al/lesson12/part5

1. Let's see the usage of the program:

https://linux-cli.fs.al/lesson12/part5
https://linux-cli.fs.al/lesson12/part5

Bash Scripting Lesson 12 Intro

Intro

In this lesson we will see:

looping with while /until

branching with case

positional parameters

NOTE

Let's get first some examples:

DOWNLOAD LESSON12/INTRO.CAST

mkdir -p examples && cd examples/

wget https://linux-cli.fs.al/examples/lesson12.tgz

tar xfz lesson12.tgz

cd lesson12/ && ls

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson12
https://linux-cli.fs.al/examples/lesson12.tgz
https://linux-cli.fs.al/assets/files/intro-6d87cbb5a2a733f020b66eae6b0c8baa.cast

Bash Scripting Lesson 12 1. Looping with while and until

1. Looping with while and until

The syntax of the while command is as follows:

1. A simple example:

2. We can use a while loop to improve the menu program from the previous

lesson:

while commands; do commands; done

while-count.sh

#!/bin/bash

while-count: display a series of numbers

count=1

while [["$count" -le 5]]; do

 echo "$count"

 count=$((count + 1))

done

echo "Finished."

vim while-count.sh

./while-count.sh

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson12

while-menu.sh

#!/bin/bash

while-menu: a menu driven system information program

DELAY=3 # Number of seconds to display results

while [["$REPLY" != 0]]; do

 clear

 cat <<- _EOF_

Please Select:

1. Display System Information

2. Display Disk Space

3. Display Home Space Utilization

0. Quit

EOF

 read -p "Enter selection [0-3] > "

 if [["$REPLY" =~ ^[0-3]$]]; then

 if [[$REPLY == 1]]; then

 echo "Hostname: $HOSTNAME"

 uptime

 sleep "$DELAY"

 fi

 if [["$REPLY" == 2]]; then

 df -h .

 sleep "$DELAY"

 fi

 if [["$REPLY" == 3]]; then

 if [["$(id -u)" -eq 0]]; then

 echo "Home Space Utilization (All Users)"

 du -sh /home/*

 else

 echo "Home Space Utilization ($USER)"

 du -sh "$HOME"

 fi

 sleep "$DELAY"

 fi

By enclosing the menu in a while loop, we are able to have the program repeat

the menu display after each selection. The loop continues as long as REPLY is

not equal to 0 and the menu is displayed again, giving the user the opportunity

to make another selection. At the end of each action, a sleep command is

executed so the program will pause for a few seconds to allow the results of the

selection to be seen before the screen is cleared and the menu is redisplayed.

Once REPLY is equal to 0 , indicating the “quit” selection, the loop terminates

and execution continues with the line following done .

3. Inside a loop in bash we can use break and continue .

 else

 echo "Invalid entry."

 sleep "$DELAY"

 fi

done

echo "Program terminated."

vim while-menu.sh

./while-menu.sh

while-menu2.sh

#!/bin/bash

while-menu: a menu driven system information program

DELAY=3 # Number of seconds to display results

while true; do

 clear

 cat <<- _EOF_

Please Select:

1. Display System Information

2. Display Disk Space

3. Display Home Space Utilization

0. Quit

EOF

 read -p "Enter selection [0-3] > "

 if [["$REPLY" == 0]]; then

 break

 fi

 if [[! "$REPLY" =~ ^[0-3]$]]; then

 echo "Invalid entry."

 sleep "$DELAY"

 continue

 fi

 if [[$REPLY == 1]]; then

 echo "Hostname: $HOSTNAME"

 uptime

 sleep "$DELAY"

 continue

 fi

 if [["$REPLY" == 2]]; then

 df -h .

 sleep "$DELAY"

 continue

 fi

 if [["$REPLY" == 3]]; then

 if [["$(id -u)" -eq 0]]; then

 echo "Home Space Utilization (All Users)"

 du -sh /home/*

 else

 echo "Home Space Utilization ($USER)"

 du -sh "$HOME"

 fi

 sleep "$DELAY"

 continue

 fi

done

echo "Program terminated."

4. The until loop is very similar to the while loop, but with a negated condition.

5. We can also read the standard input with while and until :

vim while-menu2.sh

./while-menu2.sh

until-count.sh

#!/bin/bash

until-count: display a series of numbers

count=1

until [["$count" -gt 5]]; do

 echo "$count"

 count=$((count + 1))

done

echo "Finished."

vim until-count.sh

./until-count.sh

cat distros.txt

while-read.sh

The while loop will continue as long as the read command is successful getting

input from stdin, and we redirect stdin to get data from the file distros.txt (by

using the operator < at the end of the while command).

We can also use a pipe (|) to redirect the stdin:

#!/bin/bash

while-read: read lines from a file

while read distro version release

do

 printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

 "$distro" \

 "$version" \

 "$release"

done < distros.txt

vim while-read.sh

./while-read.sh

while-read2.sh

#!/bin/bash

while-read2: read lines from a file

sort -k 1,1 -k 2n distros.txt | \

 while read distro version release; do

 printf "Distro: %s\tVersion: %s\tReleased: %s\n" \

 "$distro" \

Notice that we are breaking long commands by adding a \ at the end of a line,

in order to make the program more readable and clear.

DOWNLOAD LESSON12/PART1.CAST

 "$version" \

 "$release"

 done

vim while-read2.sh

./while-read2.sh

https://linux-cli.fs.al/assets/files/part1-04435578305d8d660d199c14031e9c5d.cast

Bash Scripting Lesson 12 2. Branching with case

2. Branching with case

The command case is a multiple-choice command.

1. Let's see an example that implements a menu program with case :

case-menu.sh

#!/bin/bash

case-menu: a menu driven system information program

clear

echo "

Please Select:

1. Display System Information

2. Display Disk Space

3. Display Home Space Utilization

0. Quit

"

read -p "Enter selection [0-3] > "

case "$REPLY" in

 0) echo "Program terminated."

 exit

 ;;

 1) echo "Hostname: $HOSTNAME"

 uptime

 ;;

 2) df -h .

 ;;

 3) if [["$(id -u)" -eq 0]]; then

 echo "Home Space Utilization (All Users)"

 du -sh /home/*

 else

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson12

We have seen this example before, implemented with if and it is clear that

with case it is much simpler.

case attempts a match against the specified patterns. When a match is found,

the commands associated with the specified pattern are executed. After a match

is found, no further matches are attempted.

2. The patterns used by case are the same as those used by pathname expansion.

For example:

a) -- matches the character "a"

[[:alpha:]]) -- matches any alphabetic character

???) -- matches 3 characters

*.txt) -- matches anything that ends in .txt

*) -- matches anything

It is good practice to include *) as the last pattern in a case command, to

catch any values that did not match a previous pattern.

Let's see an example script with patterns:

 echo "Home Space Utilization ($USER)"

 du -sh "$HOME"

 fi

 ;;

 *) echo "Invalid entry" >&2

 exit 1

 ;;

esac

vim case-menu.sh

./case-menu.sh

3. It is also possible to combine multiple patterns using the vertical bar character

as a separator. Let's see a modified menu program that uses letters instead of

digits for menu selection:

case-patterns.sh

#!/bin/bash

read -p "enter word > "

case "$REPLY" in

 [[:alpha:]]) echo "it is a single alphabetic character" ;;

 [ABC][0-9]) echo "it is A, B, or C followed by a digit" ;;

 ???) echo "it is three characters long" ;;

 *.txt) echo "it is a word ending in '.txt'" ;;

 *) echo "it is something else" ;;

esac

vim case-patterns.sh

./case-patterns.sh # enter: x

./case-patterns.sh # enter: B2

./case-patterns.sh # enter: foo.txt

./case-patterns.sh # enter: xyz

./case-patterns.sh # enter: ab

case-menu-l .sh

#!/bin/bash

case-menu: a menu driven system information program

clear

echo "

Please Select:

A. Display System Information

B. Display Disk Space

C. Display Home Space Utilization

Q. Quit

"

read -p "Enter selection [A, B, C or Q] > "

case "$REPLY" in

 q|Q) echo "Program terminated."

 exit

 ;;

 a|A) echo "Hostname: $HOSTNAME"

 uptime

 ;;

 b|B) df -h .

 ;;

 c|C) if [["$(id -u)" -eq 0]]; then

 echo "Home Space Utilization (All Users)"

 du -sh /home/*

 else

 echo "Home Space Utilization ($USER)"

 du -sh "$HOME"

 fi

 ;;

 *) echo "Invalid entry" >&2

 exit 1

 ;;

esac

Notice how the new patterns allow for entry of both uppercase and lowercase

letters.

4. When a pattern is matched, the corresponding actions are executed, and ;;

makes sure that processing is stopped (without trying to match the following

patterns). If we want instead to try matching them as well, we can use ;;&

instead, as in this example:

vim case-menu-l.sh

./case-menu-l.sh

case4.sh

#!/bin/bash

case4: test a character

-n 1: read only one char and don't wait for enter to be

pressed

read -n 1 -p "Type a character > "

echo

case "$REPLY" in

 [[:upper:]]) echo "'$REPLY' is upper case."

;;&

 [[:lower:]]) echo "'$REPLY' is lower case."

;;&

 [[:alpha:]]) echo "'$REPLY' is alphabetic."

;;&

 [[:digit:]]) echo "'$REPLY' is a digit."

;;&

 [[:graph:]]) echo "'$REPLY' is a visible character."

;;&

 [[:punct:]]) echo "'$REPLY' is a punctuation symbol."

;;&

 [[:space:]]) echo "'$REPLY' is a whitespace character."

;;&

DOWNLOAD LESSON12/PART2.CAST

 [[:xdigit:]]) echo "'$REPLY' is a hexadecimal digit."

;;&

esac

vim case4.sh

./case4.sh # enter: a

./case4.sh # enter: X

./case4.sh # enter: +

https://linux-cli.fs.al/assets/files/part2-eeab0f7de9c89aac9e902593937f5057.cast

Bash Scripting Lesson 12 3. Positional parameters

3. Positional parameters

1. The shell provides a set of variables called positional parameters that contain

the individual words on the command line.

Let's test them with a simple script:

posit-param.sh

#!/bin/bash

posit-param: script to view command line parameters

echo "

\$0 = $0

\$1 = $1

\$2 = $2

\$3 = $3

\$4 = $4

\$5 = $5

\$6 = $6

\$7 = $7

\$8 = $8

\$9 = $9

Number of arguments: $#

"

vim posit-param.sh

./posit-param.sh

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson12

Notice that $0 contains th first word of the command, which is the name and

path of the command itself.

The special variable $# contains the number of arguments.

If we need to use more than 9 arguments, then we can use ${10} , ${11} etc. to

access them (with curly braces).

2. The shift command causes all the parameters to "move down one" each time

it is executed.

$(pwd)/posit-param.sh

./posit-param.sh a b c d

posit-param2.sh

#!/bin/bash

posit-param2: script to display all arguments

count=1

while [[$# -gt 0]]; do

 echo "Argument $count = $1"

 count=$((count + 1))

 shift

done

vim posit-param2.sh

In this example there is a loop that evaluates the number of arguments

remaining and continues as long as there is at least one.

3. Here is another example:

This program displays the file type (determined by the file command) and the

file status (from the stat command) of a specified file.

./posit-param2.sh a b c d

./posit-param2.sh a b c d e f g

file-info.sh

#!/bin/bash

file-info: simple file information program

PROGNAME="$(basename "$0")"

if [[-e "$1"]]; then

 echo -e "\nFile Type:"

 file "$1"

 echo -e "\nFile Status:"

 stat "$1"

else

 echo "$PROGNAME: usage: $PROGNAME file" >&2

 exit 1

fi

vim file-info.sh

It checks the first argument, and if it does not exist, exits with an error message

that shows how to use this script.

The command basename gets only the name of the file (discarding the path).

4. Positional parameters can be used with functions as well.

./file-info.sh

./file-info.sh posit-param2.sh

./file-info.sh .

./file-info.sh xyz

file-info-fun.sh

#!/bin/bash

file_info () {

 if [[-e "$1"]]; then

 echo -e "\nFile Type:"

 file "$1"

 echo -e "\nFile Status:"

 stat "$1"

 else

 local PROGNAME="$(basename "$0")"

 echo "$PROGNAME: usage: $FUNCNAME file" >&2

 return 1

 fi

}

echo -e '\nCalling file_info without args: file_info'

file_info

Notice that $0 always contains the full pathname of the first item on the

command line (i.e., the name of the program), even inside a function.

Notice also that FUNCNAME is a variable that always contains the name of the

current function.

5. The shell provides two special variables that contain the list of all the positional

parameters. They are $* and $@ . Let's try an example that shows their

differences:

FILE=$0

echo -e '\nCalling file_info with an argument: file_info $FILE'

file_info $FILE

vim file-info-fun.sh

./file-info-fun.sh

posit-param3.sh

#!/bin/bash

posit-params3: script to demonstrate $* and $@

print_params () {

 echo "\$1 = $1"

 echo "\$2 = $2"

 echo "\$3 = $3"

 echo "\$4 = $4"

 echo

}

pass_params () {

You see that both $* and $@ give 4 parameters. "$*" gives a single parameter,

and "$@" gives back the two original parameters. This happens because $* is a

string list of all the parameters, while $@ is an array of all the parameters.

Anyway, the most useful construct seems to be "$@" because it preserves the

original list of the parameters, and this is what we want in most of the cases.

DOWNLOAD LESSON12/PART3.CAST

 echo '-- $* --' ; print_params $*

 echo '-- "$*" --' ; print_params "$*"

 echo '-- $@ --' ; print_params $@

 echo '-- "$@" --' ; print_params "$@"

}

pass_params "word" "words with spaces"

vim posit-param3.sh

./posit-param3.sh

https://linux-cli.fs.al/assets/files/part3-1b47e95a241c41751a8ed200c171a605.cast

Bash Scripting Lesson 12 4. An example

4. An example

Let's try to improve the program sys_info.sh , that we started to build in a previous

lesson, by adding some parameters and option to it. We want to be able to:

Tell it to save the output to a specific file (instead of sending it to stdout), by

using the options -f file or --file file .

Tell it to ask interactively for a filename for saving the output. This option should

be specified by -i or --interactive .

Use the options -h or --help to make the program output information about its

usage.

1. There is a small git repo on the archive sys_info.tgz , let's open it:

2. Let's get first the initial version of the script (that was developed in a previous

lesson):

tar xfz sys_info.tgz

cd sys_info/

ls -al

git log --oneline

git tag

git checkout -q 1.initial

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson12

git status

vim sys_info.sh

sys_info.initial.sh

#!/bin/bash

Program to output a system information page

TITLE="System Information Report For $HOSTNAME"

CURRENT_TIME=$(date +"%x %r %Z")

TIMESTAMP="Generated on $CURRENT_TIME, by $USER"

report_uptime() {

 cat <<- _EOF_

<h2>System Uptime</h2>

<pre>$(uptime)</pre>

EOF

 return

}

report_disk_space() {

 cat <<- _EOF_

<h2>Disk Space Utilization</h2>

<pre>$(df -h .)</pre>

EOF

 return

}

report_home_space() {

 if [["$(id -u)" -eq 0]]; then

 cat <<- _EOF_

<h2>Home Space Utilization (All Users)</h2>

<pre>$(du -hs /home/*)</pre>

EOF

 else

3. Let's see some modifications and improvements to it:

Enclose in a function the last part (that generates the HTML page):

 cat <<- _EOF_

<h2>Home Space Utilization ($PWD)</h2>

<pre>$(du -hs "$PWD")</pre>

EOF

 fi

 return

}

cat << _EOF_

<html>

 <head>

 <title>$TITLE</title>

 </head>

 <body>

 <h1>$TITLE</h1>

 <p>$TIMESTAMP</p>

 $(report_uptime)

 $(report_disk_space)

 $(report_home_space)

 </body>

</html>

EOF

./sys_info.sh

git checkout -q 2.write_html_page

git diff 1.initial

git diff 1.initial

diff --git a/sys_info.sh b/sys_info.sh

index 4f261db..6291299 100755

--- a/sys_info.sh

+++ b/sys_info.sh

@@ -37,18 +37,23 @@ report_home_space() {

 return

 }

+write_html_page () {

+ cat <<- _EOF_

+ <html>

+ <head>

+ <title>$TITLE</title>

+ </head>

+ <body>

+ <h1>$TITLE</h1>

+ <p>$TIMESTAMP</p>

+ $(report_uptime)

+ $(report_disk_space)

+ $(report_home_space)

+ </body>

+ </html>

+ _EOF_

+}

+

+# output html page

+write_html_page

-cat << _EOF_

-<html>

- <head>

- <title>$TITLE</title>

- </head>

- <body>

- <h1>$TITLE</h1>

- <p>$TIMESTAMP</p>

- $(report_uptime)

- $(report_disk_space)

- $(report_home_space)

- </body>

Add a function that displays the usage of the program:

-</html>

-_EOF_

git checkout -q 3.usage

git diff 2.write_html_page

git diff 2.write_html_page

diff --git a/sys_info.sh b/sys_info.sh

index 6291299..b58cf06 100755

--- a/sys_info.sh

+++ b/sys_info.sh

@@ -1,7 +1,23 @@

 #!/bin/bash

-

 # Program to output a system information page

+usage () {

+ cat <<- _EOF_

+ $PROGNAME: usage:

+

+ $PROGNAME (-f | --file) <file>

+ Output the report to the given file.

+

+ $PROGNAME (-i | --interactive)

+ Get the output file interactively from the

keyboard.

+

+ $PROGNAME [-h | --help]

+ Display this help message.

+ _EOF_

+ return

4. Add some code that reads the command line options:

+}

+

+PROGNAME="$(basename "$0")"

 TITLE="System Information Report For $HOSTNAME"

 CURRENT_TIME=$(date +"%x %r %Z")

 TIMESTAMP="Generated on $CURRENT_TIME, by $USER"

git checkout -q 4.process_options

git diff 3.usage

git diff 3.usage

diff --git a/sys_info.sh b/sys_info.sh

index b58cf06..37ddc1b 100755

--- a/sys_info.sh

+++ b/sys_info.sh

@@ -17,6 +17,30 @@ usage () {

 return

 }

+# process command line options

+interactive=''

+filename=''

+while [[-n "$1"]]; do

+ case "$1" in

+ -f | --file)

+ shift

+ filename="$1"

+ ;;

+ -i | --interactive)

+ interactive=1

+ ;;

We use a while loop and shift to process all the options. Inside the loop we

use case to match the option with one of those that are expected. If the option

is -f (or --file), we interpret the next parameter as a filename and set it to

the variable filename . If the option is -i (or --interactive), we set the

variable interactive to 1 (otherwise it will remain empty).

Notice that the actions corresponding to -h | --help) and *) are very similar,

they display the usage and exit the program. However the later case is

considered an error, because there is an unknown/unsupported option, so the

usage is sent to stderr (>&2) and the program exits with code 1 (error).

5. If the option -i or (--interactive) is supplied, the program should get a file

name interactively (from the keyboard). Let's see the code that does that:

+ -h | --help)

+ usage

+ exit

+ ;;

+ *)

+ usage >&2

+ exit 1

+ ;;

+ esac

+ shift

+done

+

 PROGNAME="$(basename "$0")"

 TITLE="System Information Report For $HOSTNAME"

 CURRENT_TIME=$(date +"%x %r %Z")

git checkout -q 5.interactive

git diff 4.process_options

git diff 4.process_options

diff --git a/sys_info.sh b/sys_info.sh

index 37ddc1b..f8a2fba 100755

--- a/sys_info.sh

+++ b/sys_info.sh

@@ -41,6 +41,32 @@ while [[-n "$1"]]; do

 shift

 done

+# interactive mode

+if [[-n "$interactive"]]; then

+ while true; do

+ read -p "Enter name of output file: " filename

+ if [[-e "$filename"]]; then

+ read -p "'$filename' exists. Overwrite? [y/n/q] > "

+ case "$REPLY" in

+ Y|y)

+ break

+ ;;

+ Q|q)

+ echo "Program terminated."

+ exit

+ ;;

+ *)

+ continue

+ ;;

+ esac

+ elif [[-z "$filename"]]; then

+ continue

+ else

+ break

+ fi

+ done

+fi

+

 PROGNAME="$(basename "$0")"

 TITLE="System Information Report For $HOSTNAME"

 CURRENT_TIME=$(date +"%x %r %Z")

This code is executed only if the global variable interactive is not empty.

There is an infinite while loop that tries to read the name of the file into to

global variable filename . We check that the given value is not empty and that

such a file does not exist already. If there is already such a file, we ask again

whether we can overwrite the file or not.

We use the loop so that we can ask again for another file name if the given one

is not suitable, and we repeat until we have a suitable file name (stored in the

variable filename).

6. Now let's see the code that outputs the HTML page:

git checkout -q 6.output_html_page

git diff 5.interactive

git diff 5.interactive

diff --git a/sys_info.sh b/sys_info.sh

index f8a2fba..8c3e576 100755

--- a/sys_info.sh

+++ b/sys_info.sh

@@ -121,5 +121,13 @@ write_html_page () {

 }

 # output html page

-write_html_page

-

+if [[-n "$filename"]]; then

+ if touch "$filename" && [[-f "$filename"]]; then

+ write_html_page > "$filename"

+ else

+ echo "$PROGNAME: Cannot write file '$filename'" >&2

+ exit 1

+ fi

If the variable filename is empty, then the HTML page will be sent to the

stdout, same as before. Otherwise the program will try to send it to the given

file (using redirection). The program also makes sure that we can write to the

file, by trying to create an empty file first.

7. Finally, let's study the latest version of the program.

+else

+ write_html_page

+fi

git checkout master

vim sys_info.sh

sys_info.final.sh

#!/bin/bash

Program to output a system information page

PROGNAME="$(basename "$0")"

usage () {

 cat <<- _EOF_

Usage:

 $PROGNAME

 Output the report to the stdout.

 $PROGNAME (-f | --file) <file>

 Output the report to the given file.

 $PROGNAME (-i | --interactive)

 Get the output file interactively from the

keyboard.

 $PROGNAME (-h | --help)

 Display this help message.

EOF

 return

}

main () {

 # global aux vars

 interactive=''

 filename=''

 process_options "$@"

 interactive_mode

 output_html_page

}

process_options () {

 # process command line options

 while [[-n "$1"]]; do

 case "$1" in

 -f | --file)

 shift

 filename="$1"

 ;;

 -i | --interactive)

 interactive=1

 ;;

 -h | --help)

 usage

 exit

 ;;

 *)

 usage >&2

 exit 1

 ;;

 esac

 shift

 done

}

interactive_mode () {

 # interactive mode

 if [[-n "$interactive"]]; then

 while true; do

 read -p "Enter name of output file: " filename

 if [[-e "$filename"]]; then

 read -p "'$filename' exists. Overwrite? [y/n/q]

> "

 case "$REPLY" in

 Y|y)

 break

 ;;

 Q|q)

 echo "Program terminated."

 exit

 ;;

 *)

 continue

 ;;

 esac

 elif [[-z "$filename"]]; then

 continue

 else

 break

 fi

 done

 fi

}

output_html_page () {

 # output html page

 if [[-n "$filename"]]; then

 if touch "$filename" && [[-f "$filename"]]; then

 write_html_page > "$filename"

 else

 echo "$PROGNAME: Cannot write file '$filename'" >&2

 exit 1

 fi

 else

 write_html_page

 fi

}

write_html_page () {

 local TITLE="System Information Report For $HOSTNAME"

 local CURRENT_TIME=$(date +"%x %r %Z")

 local TIMESTAMP="Generated on $CURRENT_TIME, by $USER"

 cat <<- _EOF_

<html>

 <head>

 <title>$TITLE</title>

 </head>

 <body>

 <h1>$TITLE</h1>

 <p>$TIMESTAMP</p>

 $(report_uptime)

 $(report_disk_space)

 $(report_home_space)

 </body>

</html>

EOF

}

report_uptime() {

 cat <<- _EOF_

<h2>System Uptime</h2>

<pre>$(uptime)</pre>

EOF

 return

}

report_disk_space() {

 cat <<- _EOF_

<h2>Disk Space Utilization</h2>

<pre>$(df -h .)</pre>

EOF

 return

}

report_home_space() {

 if [["$(id -u)" -eq 0]]; then

 cat <<- _EOF_

<h2>Home Space Utilization (All Users)</h2>

<pre>$(du -hs /home/*)</pre>

EOF

Notice that we have placed almost all the code inside a function. There is a

function main() that calls some other functions, then these functions call some

other ones, and so on.

The main() function is called at the very end of the program, like this:

main "$@"

This makes sure that all the parameters given to the program are passed to the

main function. The main function in turn passes all of them to the function

process_options , like this:

process_options "$@"

DOWNLOAD LESSON12/PART4.CAST

 else

 cat <<- _EOF_

<h2>Home Space Utilization ($PWD)</h2>

<pre>$(du -hs "$PWD")</pre>

EOF

 fi

 return

}

call the main function

main "$@"

:set tabstop=8

https://linux-cli.fs.al/assets/files/part4-ba0033b5d9258428725f3174dbfedfd6.cast

Bash Scripting Lesson 12 5. Testing the example

5. Testing the example

1. Let's see the usage of the program:

2. We see that we can also call it without any parameters. Let's try it:

Exit with qy

3. We can write the output to a file using the option -f or --file :

4. Let's also try the interactive method:

./sys_info.sh -h

./sys_info.sh --help

./sys_info.sh

./sys_info.sh > report1.html

lynx report1.html

./sys_info.sh -f report2.html

cat report2.html

./sys_info.sh --file report3.html

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson12

Enter the name of the output file as report1.html

Press n for not overwriting the existing file.

Enter the new name of the output file as report2.html

Press y for overwriting the existing file.

Enter the name of the output file as report3.html

Press n for not overwriting the existing file.

Enter the new name of the output file as report4.html

Exit with qy

DOWNLOAD LESSON12/PART5.CAST

./sys_info.sh -i

./sys_info.sh --interactive

lynx report4.html

https://linux-cli.fs.al/assets/files/part5-eca26cf61f26652eb6d84fbbf2e09ca5.cast

📄️ Intro

In this lesson we will see:

📄️ 1. Looping with for

1. With for we can loop a list of words:

📄️ 2. Variable expansions

1. We have already seen that sometimes we need to surround variable

📄️ 3. String operations

1. Length of the string: $

📄️ 4. Arithmetic evaluation and expansion

We have seen before $((expression)) where expression is an

https://linux-cli.fs.al/lesson13/intro
https://linux-cli.fs.al/lesson13/part1
https://linux-cli.fs.al/lesson13/part2
https://linux-cli.fs.al/lesson13/part3
https://linux-cli.fs.al/lesson13/part4

Bash Scripting Lesson 13 Intro

Intro

In this lesson we will see:

looping with for

parameter expansion

arithmetic evaluation and expansion

NOTE

Let's get first some examples:

DOWNLOAD LESSON13/INTRO.CAST

mkdir -p examples && cd examples/

wget https://linux-cli.fs.al/examples/lesson13.tgz

tar xfz lesson13.tgz

cd lesson13/ && ls

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson13
https://linux-cli.fs.al/examples/lesson13.tgz
https://linux-cli.fs.al/assets/files/intro-c608f555ef181622ec6ab63e2c3a6ccf.cast

Bash Scripting Lesson 13 1. Looping with for

1. Looping with for

1. With for we can loop a list of words:

In these cases it is using shell expansions.

The last file expansion may fail if there are no files like that, in which case shell

will return just *.sh (instead of a list of matching files). To protect against this,

we can rewrite the last example like this:

2. Let's see an example that finds the longest word in a file:

for i in A B C D; do echo $i; done

for i in {A..D}; do echo $i; done

for i in *.sh; do echo "$i"; done

for i in *.sh; do [[-e "$i"]] && echo "$i"; done

longest-word.sh

#!/bin/bash

longest-word: find longest string in a file

while [[-n "$1"]]; do

 if [[-r "$1"]]; then

 max_word=

 max_len=0

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson13

Actually it can take one or more files as parameters and process each of them.

This is implemented by the while loop:

The if checks that the file is readable (otherwise it is skipped).

The list of words of the file is produced by the command strings "$1" . We use

a command substitution to use this list in the for statement:

Notice that we are not surrounding $(strings "$1") with double quotes,

otherwise it will be treated as a single string, which is not what we want.

 for i in $(strings "$1"); do

 len="$(echo -n "$i" | wc -c)"

 if ((len > max_len)); then

 max_len="$len"

 max_word="$i"

 fi

 done

 echo "$1: '$max_word' ($max_len characters)"

 fi

 shift

done

vim longest-word.sh

while [[-n "$1"]]; do

 if [[-r "$1"]]; then

 #

 #

 fi

 shift

done

for i in $(strings "$1"); do

Let's try it:

3. Let's see a slightly modified version of the previous example:

The modification consists on replacing the while loop with a for loop like this:

echo *

./longest-word.sh *

longest-word2.sh

#!/bin/bash

longest-word2: find longest string in a file

for i; do

 if [[-r "$i"]]; then

 max_word=

 max_len=0

 for j in $(strings "$i"); do

 len="$(echo -n "$j" | wc -c)"

 if ((len > max_len)); then

 max_len="$len"

 max_word="$j"

 fi

 done

 echo "$i: '$max_word' ($max_len characters)"

 fi

done

vim longest-word2.sh

And since we are using the variable i for the outer loop, in the inner loop we

have replaced i with j .

When we omit the list of words, for will use by default the positional

parameters.

4. for has also another form, which is similar to that of C (and many other

languages):

As you know, the construct ((...)) is used for arithmetic expressions, and

inside it we don't use a $ in front of the variables.

5. Let's also make a small modification to the program sys_info.sh that we saw in

the last lesson:

for i; do

 if [[-r "$i"]]; then

 #

 #

 fi

done

echo *

./longest-word2.sh *

for ((i=0; i<5; i=i+1)); do echo $i; done

sys_info.sh

#!/bin/bash

Program to output a system information page

PROGNAME="$(basename "$0")"

usage () {

 cat <<- _EOF_

Usage:

 $PROGNAME

 Output the report to the stdout.

 $PROGNAME (-f | --file) <file>

 Output the report to the given file.

 $PROGNAME (-i | --interactive)

 Get the output file interactively from the

keyboard.

 $PROGNAME (-h | --help)

 Display this help message.

EOF

 return

}

main () {

 # global aux vars

 interactive=''

 filename=''

 process_options "$@"

 interactive_mode

 output_html_page

}

process_options () {

 # process command line options

 while [[-n "$1"]]; do

 case "$1" in

 -f | --file)

 shift

 filename="$1"

 ;;

 -i | --interactive)

 interactive=1

 ;;

 -h | --help)

 usage

 exit

 ;;

 *)

 usage >&2

 exit 1

 ;;

 esac

 shift

 done

}

interactive_mode () {

 # interactive mode

 if [[-n "$interactive"]]; then

 while true; do

 read -p "Enter name of output file: " filename

 if [[-e "$filename"]]; then

 read -p "'$filename' exists. Overwrite? [y/n/q]

> "

 case "$REPLY" in

 Y|y)

 break

 ;;

 Q|q)

 echo "Program terminated."

 exit

 ;;

 *)

 continue

 ;;

 esac

 elif [[-z "$filename"]]; then

 continue

 else

 break

 fi

 done

 fi

}

output_html_page () {

 # output html page

 if [[-n "$filename"]]; then

 if touch "$filename" && [[-f "$filename"]]; then

 write_html_page > "$filename"

 else

 echo "$PROGNAME: Cannot write file '$filename'" >&2

 exit 1

 fi

 else

 write_html_page

 fi

}

write_html_page () {

 local TITLE="System Information Report For $HOSTNAME"

 local CURRENT_TIME=$(date +"%x %r %Z")

 local TIMESTAMP="Generated on $CURRENT_TIME, by $USER"

 cat <<- _EOF_

<html>

 <head>

 <title>$TITLE</title>

 </head>

 <body>

 <h1>$TITLE</h1>

 <p>$TIMESTAMP</p>

 $(report_uptime)

 $(report_disk_space)

 $(report_home_space)

 </body>

</html>

EOF

}

report_uptime() {

 cat <<- _EOF_

<h2>System Uptime</h2>

<pre>$(uptime)</pre>

EOF

 return

}

report_disk_space() {

 cat <<- _EOF_

<h2>Disk Space Utilization</h2>

<pre>$(df -h .)</pre>

EOF

 return

}

report_home_space () {

 local format="%8s%10s%10s\n"

 local i dir_list total_files total_dirs total_size user_name

 if [["$(id -u)" -eq 0]]; then

 dir_list=/home/*

 user_name="All Users"

 else

 dir_list="$PWD"

 user_name="$USER"

 fi

 echo "<h2>Home Space Utilization ($user_name)</h2>"

 for i in $dir_list; do

 total_files="$(find "$i" -type f | wc -l)"

 total_dirs="$(find "$i" -type d | wc -l)"

 total_size="$(du -sh "$i" | cut -f 1)"

 echo "<H3>$i</H3>"

 echo "<pre>"

 printf "$format" "Dirs" "Files" "Size"

 printf "$format" "----" "-----" "----"

 printf "$format" "$total_dirs" "$total_files"

"$total_size"

 echo "</pre>"

 done

 return

}

call the main function

main "$@"

Only report_home_space () (the last function) has been modified. It provides

more detail for each user’s home directory and includes the total number of files

and subdirectories in each. We also use some local variables and use printf

(instead of echo) to format some of the output.

DOWNLOAD LESSON13/PART1.CAST

vim sys_info.sh

./sys_info.sh > report.html

lynx report.html

https://linux-cli.fs.al/assets/files/part1-65f9aff47e0f9a928dab417a6c44e91e.cast

Bash Scripting Lesson 13 2. Variable expansions

2. Variable expansions

1. We have already seen that sometimes we need to surround variable names in

braces, to avoid any confusion:

2. Get a default value if the variable is unset (or empty):

${parameter:-word}

a="foo"

echo "$a_file"

echo "${a}_file"

foo=

echo ${foo:-"substitute value if unset"}

echo $foo

foo=bar

echo ${foo:-"substitute value if unset"}

echo $foo

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson13

3. Assign a default value if the variable is unset (or empty):

${parameter:=word}

Note: Positional and other special parameters cannot be assigned this way.

4. Exit with an error message if the parameter is unset or empty:

${parameter:?word}

foo=

echo ${foo:="default value if unset"}

echo $foo

foo=bar

echo ${foo:="default value if unset"}

echo $foo

foo=

echo ${foo:?"parameter is empty"}

echo $?

foo=bar

5. Return the given value only if the parameter is not empty:

${parameter:+word}

6. Return the names of variables that begin with a prefix:

${!prefix*} or ${!prefix@}

DOWNLOAD LESSON13/PART2.CAST

echo ${foo:?"parameter is empty"}

echo $?

foo=

echo ${foo:+"substitute value if set"}

foo=bar

echo ${foo:+"substitute value if set"}

echo ${!BASH*}

echo ${!BASH@}

https://linux-cli.fs.al/assets/files/part2-7fae20d2126e73c51dc97aafe3cd8da8.cast

Bash Scripting Lesson 13 3. String operations

3. String operations

1. Length of the string: ${#parameter}

However, ${#@} and ${#*} give the number of the positional parameters.

2. Extract a substring:

${parameter:offset}

${parameter:offset:length}

Notice that a space is needed before the - in order to avoid confusion with a

default value.

3. Remove text from the beginning and from the end:

${parameter#pattern}

${parameter##pattern}

foo="This string is long."

echo "'$foo' is ${#foo} characters long."

echo ${foo:5}

echo ${foo:5:6}

echo ${foo: -5}

echo ${foo: -5:2}

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson13

${parameter%pattern}

${parameter%%pattern}

4. Replace:

${parameter/pattern/string}

${parameter//pattern/string}

${parameter/#pattern/string}

${parameter/%pattern/string}

foo=file.txt.zip

echo ${foo#*.}

echo ${foo##*.}

echo ${foo%.*}

echo ${foo%%.*}

foo=XYZ.XYZ.XYZ

echo ${foo/XYZ/ABC}

echo ${foo//XYZ/ABC}

echo ${foo/%XYZ/ABC}

If the replacement is omitted, then the matched pattern will be deleted.

5. Let's modify the previous longest-word example to use ${#j} instead of

$(echo -n "$j" | wc -c) for getting the length of a word:

echo ${foo/#XYZ/ABC}

echo ${foo/XYZ}

echo ${foo//XYZ}

echo ${foo/%XYZ}

echo ${foo/#XYZ}

diff -u longest-word3.sh longest-word2.sh

diff -u longest-word3.sh longest-word2.sh

--- longest-word2.sh 2023-06-28 01:48:25.000000000 +0000

+++ longest-word3.sh 2023-09-30 16:13:27.942258976 +0000

@@ -7,7 +7,7 @@

 max_word=

 max_len=0

 for j in $(strings "$i"); do

- len="$(echo -n "$j" | wc -c)"

+ len="${#j}"

 if ((len > max_len)); then

 max_len="$len"

 max_word="$j"

vim longest-word3.sh

longest-word3.sh

It is not only simpler, but also more efficient:

6. Case conversion:

#!/bin/bash

longest-word2: find longest string in a file

for i; do

 if [[-r "$i"]]; then

 max_word=

 max_len=0

 for j in $(strings "$i"); do

 len="${#j}"

 if ((len > max_len)); then

 max_len="$len"

 max_word="$j"

 fi

 done

 echo "$i: '$max_word' ($max_len characters)"

 fi

done

ls -l /usr/bin > dirlist-usr-bin.txt

./longest-word3.sh dirlist-usr-bin.txt

time ./longest-word3.sh dirlist-usr-bin.txt

time ./longest-word2.sh dirlist-usr-bin.txt

We can also declare a variable to keep only uppercase or lowercase content:

foo=ABCD

echo ${foo,}

echo ${foo,,}

foo=abcd

echo ${foo^}

echo ${foo^^}

declare -u foo

foo=aBcD

echo $foo

declare -l foo

foo=aBcD

echo $foo

DOWNLOAD LESSON13/PART3.CAST

unset foo

foo=aBcD

echo $foo

https://linux-cli.fs.al/assets/files/part3-4bc0b7104f71f1535f8effa82ded2b89.cast

Bash Scripting Lesson 13 4. Arithmetic evaluation and expansion

4. Arithmetic evaluation and

expansion

We have seen before $((expression)) where expression is an arithmetic

expression. It is related to the compound command ((...)) which is used for

arithmetic evaluation (truth tests). Here we will see some more arithmetic operators

and expressions.

1. By default numbers are treated as decimals (base 10). But we can also use octal

numbers (base 8), hexadecimal numbers (base 16), etc.

2. Arithmetic operators:

echo $((99)) # decimal

echo $((077)) # octal

echo $((0xff)) # hexadecimal

echo $((2#11)) # binary

echo $((7#66)) # base 7

echo $((5 + 2))

echo $((5 - 2))

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson13

An example:

echo $((5 * 2))

echo $((5 ** 2))

echo $((5 / 2))

echo $((5 % 2))

vim modulo.sh

modulo.sh

#!/bin/bash

modulo: demonstrate the modulo operator

for ((i = 0; i <= 20; i = i + 1)); do

 remainder=$((i % 5))

 if ((remainder == 0)); then

 printf "<%d> " "$i"

 else

 printf "%d " "$i"

 fi

done

printf "\n"

./modulo.sh

3. Assignment:

The = sign above makes an assignment, and this assignment is successful. To

check for equality we can use == .

Other assignment operators are: += , -= , *= , /= , %= .

There are also incremental/decremental operators: ++ and --

Let's see a modified version of the modulo.sh example:

foo=

echo $foo

if ((foo = 5)); then echo "It is true."; fi

echo $foo

foo=1

echo $((foo++))

echo $foo

foo=1

echo $((++foo))

echo $foo

vim modulo2.sh

modulo2.sh

#!/bin/bash

modulo: demonstrate the modulo operator

for ((i = 0; i <= 20; ++i)); do

 if ((i % 5 == 0)); then

 printf "<%d> " "$i"

 else

 printf "%d " "$i"

 fi

done

printf "\n"

diff -u modulo.sh modulo2.sh

diff -u modulo.sh modulo2.sh

--- modulo.sh 2023-06-28 01:48:25.000000000 +0000

+++ modulo2.sh 2023-06-28 01:48:25.000000000 +0000

@@ -2,9 +2,8 @@

 # modulo: demonstrate the modulo operator

-for ((i = 0; i <= 20; i = i + 1)); do

- remainder=$((i % 5))

- if ((remainder == 0)); then

+for ((i = 0; i <= 20; ++i)); do

+ if ((i % 5 == 0)); then

 printf "<%d> " "$i"

 else

 printf "%d " "$i"

4. There are also some operators that work at the bit level:

~ -- Negate all the bits in a number.

<< -- Shift all the bits in a number to the left.

>> -- Shift all the bits in a number to the right.

& -- Perform an AND operation on all the bits in two numbers.

| -- Perform an OR operation on all the bits in two numbers.

^ -- Perform an exclusive OR operation on all the bits in two numbers.

There are also corresponding assignment operators (for example, <<=) for all

but bitwise negation.

Let's see an example that prints the powers of 2:

5. The compound command ((...)) supports also comparison operators: == , != ,

< , <= , > , >= , && (logical AND), || (logical OR).

It also supports the ternary operator: expr1?expr2:expr3 . If expression expr1

evaluates to be non-zero (arithmetic true), then expr2 ; else expr3 .

Logical expressions follow the rules of arithmetic logic; that is, expressions that

evaluate as zero are considered false, while non-zero expressions are considered

true. The ((...)) compound command maps the results into the shell’s normal

exit codes.

./modulo2.sh

for ((i=0;i<8;++i)); do echo $((1<<i)); done

if ((1)); then echo "true"; else echo "false"; fi

if ((0)); then echo "true"; else echo "false"; fi

The ternary operator is like a compact if/then/else statement:

6. Let's see a more complete example of using arithmetic operators in a script that

produces a simple table of numbers.

a=0

((a<1?++a:--a))

echo $a

((a<1?++a:--a))

echo $a

a=$((a<1?a+1:a-1))

echo $a

vim arith-loop.sh

arith-loop.sh

#!/bin/bash

arith-loop: script to demonstrate arithmetic operators

finished=0

7. For complex arithmetics we can use bc , which is an arbitrary precision

calculator.

This example script calculates monthly loan payments:

a=0

printf "a\ta**2\ta**3\n"

printf "=\t====\t====\n"

until ((finished)); do

 b=$((a**2))

 c=$((a**3))

 printf "%d\t%d\t%d\n" "$a" "$b" "$c"

 ((a<10?++a:(finished=1)))

done

./arith-loop.sh

bc <<< '2 + 2'

echo '2 + 2' | bc

vim loan-calc.sh

loan-calc.sh

#!/bin/bash

loan-calc: script to calculate monthly loan payments

PROGNAME="${0##*/}" # Use parameter expansion to get basename

This example calculates the monthly payment for a $135,000 loan at 7.75

percent APR for 180 months (15 years). Notice the precision of the answer. This

is determined by the value given to the special scale variable in the bc script.

For more details about bc see:

usage () {

 cat <<- EOF

Usage: $PROGNAME PRINCIPAL INTEREST MONTHS

Where:

PRINCIPAL is the amount of the loan.

INTEREST is the APR as a number (7% = 0.07).

MONTHS is the length of the loan's term.

EOF

}

if (($# != 3)); then

 usage

 exit 1

fi

principal=$1

interest=$2

months=$3

bc <<- EOF

scale = 10

i = $interest / 12

p = $principal

n = $months

a = p * ((i * ((1 + i) ^ n)) / (((1 + i) ^ n) - 1))

print a, "\n"

EOF

./loan-calc.sh 135000 0.0775 180

man bc

DOWNLOAD LESSON13/PART4.CAST

info bc

https://linux-cli.fs.al/assets/files/part4-83f90a489019a7d24ff8916f79c17147.cast

📄️ Intro

In this lesson we will see:

📄️ 1. Arrays

Arrays are variables that hold more than one value at a time.

📄️ 2. Group commands. Subshells. Process substitutio…

1. Group commands and subshells.

📄️ 3. Traps. Asynchronous execution. Named pipes.

1. We know that programs can respond to signals. We can add this

https://linux-cli.fs.al/lesson14/intro
https://linux-cli.fs.al/lesson14/part1
https://linux-cli.fs.al/lesson14/part2
https://linux-cli.fs.al/lesson14/part3

Bash Scripting Lesson 14 Intro

Intro

In this lesson we will see:

arrays

group commands

subshell

process substitution

traps

asynchronous execution

named pipes

NOTE

Let's get first some examples:

DOWNLOAD LESSON14/INTRO.CAST

mkdir -p examples && cd examples/

wget https://linux-cli.fs.al/examples/lesson14.tgz

tar xfz lesson14.tgz

cd lesson14/ && ls

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson14
https://linux-cli.fs.al/examples/lesson14.tgz
https://linux-cli.fs.al/assets/files/intro-9efc6c6aed14c77132a3b7f922fa342a.cast

Bash Scripting Lesson 14 1. Arrays

1. Arrays

Arrays are variables that hold more than one value at a time.

1. Getting started:

If no index is given, the first item is returned.

a[0]=foo

echo ${a[0]}

days=(Sun Mon Tue Wed Thu Fri Sat)

echo ${days[0]}

echo ${days[*]}

echo $days[*]

echo $days

days=([0]=Sun [1]=Mon [2]=Tue [3]=Wed [4]=Thu [5]=Fri [6]=Sat)

echo ${days[*]}

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson14

2. Let's see an example that counts files by modification time and shows them in a

table. Such a script could be used to determine when a system is most active.

./hours.sh

./hours.sh /usr/bin/

vim hours.sh

hours.sh

#!/bin/bash

hours: script to count files by modification time

usage () {

 echo "usage: ${0##*/} directory" >&2

}

Check that argument is a directory

if [[! -d "$1"]]; then

 usage

 exit 1

fi

Initialize array

for i in {0..23}; do hours[i]=0; done

Collect data

for i in $(stat -c %y "$1"/* | cut -c 12-13); do

 j="${i#0}"

 ((++hours[j]))

 ((++count))

done

To get the last modification time of the files we use the command stat :

We use the hour of modification as an index for the array.

3. Outputting the entire contents of an array:

Display data

echo -e "Hour\tFiles\tHour\tFiles"

echo -e "----\t-----\t----\t-----"

for i in {0..11}; do

 j=$((i + 12))

 printf "%02d\t%d\t%02d\t%d\n" \

 "$i" \

 "${hours[i]}" \

 "$j" \

 "${hours[j]}"

done

printf "\nTotal files = %d\n" $count

stat --help | less

stat -c %y *

stat -c %y * | cut -c 12-13

animals=("a dog" "a cat" "a fish")

for i in ${animals[*]}; do echo $i; done

for i in ${animals[@]}; do echo $i; done

Notice that this is similar to the behavior of the array of the positional

parameters: $* , $@ , "$*" , "$@" .

4. The number of array elements:

There is only one element in the array.

This is the length of the element 100.

Remember that $# is the number of positional parameters.

5. Finding the subscripts used by an array:

6. Adding elements to the end of an array:

for i in "${animals[*]}"; do echo $i; done

for i in "${animals[@]}"; do echo $i; done

a[100]=foo

echo ${#a[@]}

echo ${#a[100]}

foo=([2]=a [4]=b [6]=c)

for i in "${foo[@]}"; do echo $i; done

for i in "${!foo[@]}"; do echo $i; done

7. It is not so hard to sort an array with a little bit of coding:

8. To delete an array, use the unset command:

foo=(a b c)

echo ${foo[@]}

foo+=(d e f)

echo ${foo[@]}

vim array-sort.sh

array-sort.sh

#!/bin/bash

array-sort: Sort an array

a=(f e d c b a)

echo "Original array: ${a[@]}"

a_sorted=($(for i in "${a[@]}"; do echo $i; done | sort))

#a_sorted=($(echo "${a[@]}" | tr ' ' "\n" | sort))

echo "Sorted array: ${a_sorted[@]}"

./array-sort.sh

It may also be used to delete single array elements.

Notice that the array element must be quoted to prevent the shell from

performing pathname expansion.

9. Notice also that the assignment of an empty value to an array does not empty

its contents:

foo=(a b c d e f)

echo ${foo[@]}

unset foo

echo ${foo[@]}

foo=(a b c d e f)

echo ${foo[@]}

unset 'foo[2]'

echo ${foo[@]}

foo=(a b c d e f)

foo=

This is because any reference to an array variable without a subscript refers to

element zero of the array. For example:

10. Associative arrays use strings rather than integers as array indexes:

Associative arrays must be created with declare -A . Its elements are accessed in

the same way as the integer indexed arrays:

DOWNLOAD LESSON14/PART1.CAST

echo ${foo[@]}

foo=(a b c d e f)

echo ${foo[@]}

foo=A

echo ${foo[@]}

declare -A colors

colors["red"]="#ff0000"

colors["green"]="#00ff00"

colors["blue"]="#0000ff"

echo ${colors["green"]}

https://linux-cli.fs.al/assets/files/part1-3717e595976b53b8eb60b916c0619c5f.cast

Bash Scripting Lesson 14 2. Group commands. Subshells. Process substitutions.

2. Group commands. Subshells.

Process substitutions.

1. Group commands and subshells.

Group command: { command1; command2; [command3; ...] }

Subshell: (command1; command2; [command3;...])

Because of the way bash implements group commands, the braces must be

separated from the commands by a space and the last command must be

terminated with either a semicolon or a newline prior to the closing brace.

Group commands and subshells are both used to manage redirection:

2. Let's see an example that prints a listing of the files in a directory, along with

the names of the file's owner and group owner. At the end of the listing, the

date > foo.txt

ls -l > output.txt

echo "Listing of foo.txt" >> output.txt

cat foo.txt >> output.txt

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } > output.txt

(ls -l; echo "Listing of foo.txt"; cat foo.txt) > output.txt

{ ls -l; echo "Listing of foo.txt"; cat foo.txt; } | less

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson14

script prints a tally of the number of files belonging to each owner and group.

./array-2.sh /usr/bin

vim array-2.sh

array-2.sh

#!/bin/bash

array-2: Use arrays to tally file owners

declare -A files file_group file_owner groups owners

if [[! -d "$1"]]; then

 echo "Usage: ${0##/} dir" >&2

 exit 1

fi

for i in "$1"/*; do

 owner="$(stat -c %U "$i")"

 group="$(stat -c %G "$i")"

 files["$i"]="$i"

 file_owner["$i"]="$owner"

 file_group["$i"]="$group"

 ((++owners[$owner]))

 ((++groups[$group]))

done

List the collected files

{

 for i in "${files[@]}"; do

 printf "%-40s %-10s %-10s\n" \

 "$i" "${file_owner["$i"]}" "${file_group["$i"]}"

 done

} | sort

echo

3. A group command ({ . . . }) executes all of its commands in the current

shell.

A subshell ((. . .)), as the name suggests, executes its commands in a

child copy of the current shell. This means the environment is copied and given

to a new instance of the shell. When the subshell exits, the copy of the

environment is lost, so any changes made to the subshell’s environment

(including variable assignment) are lost as well. Therefore, in most cases, unless

a script requires a subshell, group commands are preferable to subshells. Group

commands are both faster and require less memory.

We have seen before that using read with pipe does not work as we might

expect:

List owners

echo "File owners:"

{

 for i in "${!owners[@]}"; do

 printf "%-10s: %5d file(s)\n" "$i" "${owners["$i"]}"

 done

} | sort

echo

List groups

echo "File group owners:"

{

 for i in "${!groups[@]}"; do

 printf "%-10s: %5d file(s)\n" "$i" "${groups["$i"]}"

 done

} | sort

echo "foo" | read

echo $REPLY

This is because the shell executes the command after the pipe (read in this

case) in a subshell. The command read assigns a value to the variable REPLAY

in the environment of the subshell, but once the command is done executing,

the subshell and its environment are destroyed. So, the variable REPLAY of the

current shell still is unassigned (does not have a value).

4. To work around this problem, shell provides a special form of expansion, called

process substitution.

For processes that produce standard output it looks like this:

<(list-of-commands)

For processes that intake standard input it looks like this:

>(list-of-commands)

To solve our problem with read, we can employ process substitution like this:

What is happening is that process substitution allows us to treat the output of a

subshell as an ordinary file for purposes of redirection.

By using echo we see that the output of the subshell is being provided by a file

named /dev/fd/63 .

5. Let's see an example of a read loop that processes the contents of a directory

listing created by a subshell:

read < <(echo "foo")

echo $REPLY

echo <(echo "foo")

vim pro-sub.sh

Because we are using read , we cannot use a pipe to send data to it.

DOWNLOAD LESSON14/PART2.CAST

pro-sub.sh

#!/bin/bash

pro-sub: demo of process substitution

while read attr links owner group size d1 d2 d3 filename; do

 cat <<- EOF

Filename: $filename

Size: $size

Owner: $owner

Group: $group

Modified: $d1 $d2 $d3

Links: $links

Attributes: $attr

EOF

done < <(ls -lh $1 | tail -n +2)

./pro-sub.sh

./pro-sub.sh /usr/bin | less

https://linux-cli.fs.al/assets/files/part2-fe3789757c7fa5834a82351ebfc8b96e.cast

Bash Scripting Lesson 14 3. Traps. Asynchronous execution. Named pipes.

3. Traps. Asynchronous execution.

Named pipes.

1. We know that programs can respond to signals. We can add this capability to

our scripts too. Bash provides a mechanism for this purpose known as a trap.

Let's see a simple example:

When we press Ctrl-c while the script is running, the script will intercept the

signal and will respond to it by running the echo command. Let's try it:

Press Ctrl-c a few times and see what happens.

vim trap-demo.sh

trap-demo.sh

#!/bin/bash

trap-demo: simple signal handling demo

trap "echo 'I am ignoring you.'" SIGINT SIGTERM

for i in {1..5}; do

 echo "Iteration $i of 5"

 sleep 5

done

./trap-demo.sh

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson14

2. It is more convenient to tell trap to call a function in response to a signal,

instead of a complex command. Let's see another example:

Note the inclusion of an exit command in each of the signal-handling functions.

Without an exit, the script would continue after completing the function.

vim trap-demo2.sh

trap-demo2.sh

#!/bin/bash

trap-demo2: simple signal handling demo

exit_on_signal_SIGINT () {

 echo "Script interrupted." 2>&1

 exit 0

}

exit_on_signal_SIGTERM () {

 echo "Script terminated." 2>&1

 exit 0

}

trap exit_on_signal_SIGINT SIGINT

trap exit_on_signal_SIGTERM SIGTERM

for i in {1..5}; do

 echo "Iteration $i of 5"

 sleep 5

done

./trap-demo2.sh

Press Ctrl-c.

3. Bash has a builtin command to help manage asynchronous execution. The wait

command causes a parent script to pause until a specified process (i.e., the

child script) finishes.

This can be best explained by an example. We will need two scripts, a parent

script, and a child script:

This is a simple script that runs for 5 seconds.

vim async-child.sh

async-child.sh

#!/bin/bash

async-child: Asynchronous execution demo (child)

echo "Child: child is running..."

sleep 5

echo "Child: child is done. Exiting."

vim async-parent.sh

async-parent.sh

#!/bin/bash

async-parent: Asynchronous execution demo (parent)

echo "Parent: starting..."

From this script we launch the child script. Since we are appending & after it,

the parent script will not wait for the child to finish executing but will continue

running. Both of the scripts are now running in parallel. Immediately after

launching the child, the parent uses the special variable $! to get the process

ID (PID) of the child. This variable always contains the PID of the last job put into

the background. Then, later in the parent script, we use the command wait to

stop the parent from running any further, until the child script is finished. Let's

try it:

All the messages output from the parent are prefixed with Parent: and all the

messages output from the child are prefixed with Child: . This helps us

understand the flow of execution.

4. Named pipes behave like files but actually form first-in first-out (FIFO) buffers.

As with ordinary (unnamed) pipes, data goes in one end and emerges out the

other.

With named pipes, it is possible to set up something like this: process1 >

named_pipe , an this: process2 < named_pipe and it will behave like this:

echo "Parent: launching child script..."

./async-child.sh &

pid=$!

echo "Parent: child (PID= $pid) launched."

echo "Parent: continuing..."

sleep 2

echo "Parent: pausing to wait for child to finish..."

wait "$pid"

echo "Parent: child is finished. Continuing..."

echo "Parent: parent is done. Exiting."

./async-parent.sh

process1 | process2 . The only difference is that process1 and process2 run

in the current shell, not in a subshell, which makes named pipes more useful,

even if they are a bit less convenient than using a pipe operator (|).

A named pipe can be created with the command mkfifo :

Notice that the first letter in the attributes field is "p", indicating that it is a

named pipe.

This is similar to:

However the named pipe is more flexible, because the two commands

connected by the pipe can be executed even in different terminals.

However these two examples are not the same thing:

mkfifo pipe1

ls -l pipe1

ls -l > pipe1 &

cat < pipe1

ls -l | cat

echo "abc" | read

echo $REPLY

Let's remove pipe1 :

5. Another example with a named pipe:

Press Ctrl-c to stop the while loop.

echo "abc" > pipe1 &

read < pipe1

echo $REPLY

rm pipe1

mkfifo pipe1

while true; do read line < pipe1; echo "You said: '$line'"; done &

echo Hi > pipe1

echo Hello > pipe1

echo "The quick brown fox jumped over the lazy dog." > pipe1

fg

DOWNLOAD LESSON14/PART3.CAST

rm pipe1

https://linux-cli.fs.al/assets/files/part3-73cc477c0f026e53a58f6acf870d0ccd.cast

📄️ Intro

In this lesson we will study the scripts that solve some simple

📄️ Examples 1

1. This is a simple script that gets as argument the URL of a web page

📄️ Examples 2

1. This is a script that calculates the Fibonacci numbers, using an

📄️ Examples 3

Write a bash script that collects web pages from the internet,

https://linux-cli.fs.al/lesson15/intro
https://linux-cli.fs.al/lesson15/part1
https://linux-cli.fs.al/lesson15/part2
https://linux-cli.fs.al/lesson15/part3

Bash Scripting Lesson 15 Intro

Intro

In this lesson we will study the scripts that solve some simple problems:

A script that gets as argument the URL of a web page and returns all the URLs

inside that page.

A script that gets as argument the URL of a web page and returns a list of the

100 most frequently used words inside it.

A script that calculates the Fibonacci numbers, using an iterative algorithm.

A script that solves the problem of Towers of Hanoi, using a recursive algorithm.

A script that collects web pages from the internet, starting from a root page,

extracts the words in each page, and creates a list of words.

NOTE

Let's get first the examples:

DOWNLOAD LESSON15/INTRO.CAST

mkdir -p examples && cd examples/

wget https://linux-cli.fs.al/examples/lesson15.tgz

tar xfz lesson15.tgz

cd lesson15/ && ls

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson15
https://linux-cli.fs.al/examples/lesson15.tgz
https://linux-cli.fs.al/assets/files/intro-2fcd7b6fe28c55e1e45975bea1ffc85f.cast

Bash Scripting Lesson 15 Examples 1

Examples 1

1. This is a simple script that gets as argument the URL of a web page and returns

all the URLs inside that page:

get_urls.sh

#!/bin/bash

Get all the URLs inside a given HTML page.

PAGE=$1

if [[-z $PAGE]]; then

 echo "Usage: $0 <html-page>" >&2

 exit 1

fi

wget -qO- "$PAGE" \

 | grep -Eoi '<a [^>]+>' \

 | grep -Eo 'href="?([^\"]+)"?' \

 | grep -v 'mailto:' \

 | sed -e 's/"//g' -e 's/href=//'

vim get_urls.sh

./get_urls.sh

url=http://linuxcommand.org/

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson15

Let's see how it works:

The option -E is for extended regexp syntax, -o is for displaying only the

matching part, and -i is for case insensitive. We are extracting all the anchor

tags.

Extracting the attribute href .

2. This is a simple script that gets as argument the URL of a web page and returns

a list of the 100 most frequently used words inside it:

./get_urls.sh $url

wget -qO- $url

wget -qO- $url | grep -Eoi '<a [^>]+>'

wget -qO- $url | grep -Eoi '<a [^>]+>' | grep -Eo 'href="?

([^\"]+)"?'

wget -qO- $url \

 | grep -Eoi '<a [^>]+>' \

 | grep -Eoi 'href="?([^\"]+)"?' \

 | grep -v 'mailto:' \

 | sed -e 's/"//g' -e 's/href=//'

get_words.sh

#!/bin/bash

Return a list of the 100 most frequently used words inside a

given page.

PAGE=$1

if [[-z $PAGE]]; then

 echo "Usage: $0 <html-page>" >&2

 exit 1

fi

wget -q -O- "$PAGE" \

 | tr "\n" ' ' \

 | sed -e 's/<[^>]*>/ /g' \

 | sed -e 's/&[^;]*;/ /g' \

 | tr -cs A-Za-z\' '\n' \

 | tr A-Z a-z \

 | sort \

 | uniq -c \

 | sort -k1,1nr -k2 \

 | sed 100q \

 | sed -E 's/^ +//' \

 | cut -d' ' -f2

vim get_words.sh

./get_words.sh

url=https://en.wikipedia.org/wiki/Linux

./get_words.sh $url

./get_words.sh $url | less

./get_words.sh $url | wc -l

DOWNLOAD LESSON15/PART1.CAST

wget -qO- $url \

 | tr "\n" ' ' \

 | sed -e 's/<[^>]*>/ /g' \

 | sed -e 's/&[^;]*;/ /g' \

 | tr -cs A-Za-z\' '\n' \

 | tr A-Z a-z \

 | less

wget -qO- $url \

 | tr "\n" ' ' \

 | sed -e 's/<[^>]*>/ /g' \

 | sed -e 's/&[^;]*;/ /g' \

 | tr -cs A-Za-z\' '\n' \

 | tr A-Z a-z \

 | sort \

 | uniq -c \

 | less

wget -qO- $url \

 | tr "\n" ' ' \

 | sed -e 's/<[^>]*>/ /g' \

 | sed -e 's/&[^;]*;/ /g' \

 | tr -cs A-Za-z\' '\n' \

 | tr A-Z a-z \

 | sort \

 | uniq -c \

 | sort -k1,1nr -k2 \

 | sed 100q \

 | less

https://linux-cli.fs.al/assets/files/part1-8996cf535654a469162663bb5a751f09.cast

Bash Scripting Lesson 15 Examples 2

Examples 2

1. This is a script that calculates the Fibonacci numbers, using an iterative

algorithm:

fibo.sh

#!/bin/bash

N=$1

if [[-z $N]]; then

 echo "Usage: $0 <n>" >&2

 exit 1

fi

[[$N == 0]] && echo 0 && exit

[[$N == 1]] && echo 1 && exit

f0=0

f1=1

for ((i=1; i<N; i++)); do

 fib=$((f0 + f1))

 f0=$f1

 f1=$fib

done

echo $f1

vim fibo.sh

./fibo.sh

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson15

2. This is a script that solves the problem of Towers of Hanoi, using a recursive

algorithm:

for i in {0..10}; do ./fibo.sh $i; done

./fibo.sh 100

hanoi.sh

#!/bin/bash

solve_hanoi() {

 local disks=$1 src=$2 dst=$3 aux=$4

 if ((disks > 0)); then

 solve_hanoi $((disks - 1)) $src $aux $dst

 echo "move $src --> $dst"

 ((nr_moves++))

 solve_hanoi $((disks - 1)) $aux $dst $src

 fi

}

read -p "Towers of Hanoi. How many disks? " disks

nr_moves=0 # start with no moves

solve_hanoi $disks 'src' 'dst' 'aux'

echo "It took $nr_moves moves to solve Towers for $disks disks."

vim hanoi.sh

./hanoi.sh <<< 0

DOWNLOAD LESSON15/PART2.CAST

./hanoi.sh <<< 1

./hanoi.sh <<< 2

./hanoi.sh <<< 3

./hanoi.sh <<< 4

./hanoi.sh <<< 5

https://linux-cli.fs.al/assets/files/part2-6be35c84de09c8bd7ba2d76f4ee8814c.cast

Bash Scripting Lesson 15 Examples 3

Examples 3

Write a bash script that collects web pages from the internet, starting from a root

page, extracts the words in each page, and creates a list of words.

vim crawler.sh

crawler.sh

#!/bin/bash

stop the program after running for this many seconds

RUNTIME=10

check() {

 # check dependencies

 hash lynx || { echo "Please install lynx" >&2; exit 1; }

 hash w3m || { echo "Please install w3m" >&2; exit 1; }

 # check that there is an argument

 [[-z $1]] && { echo "Usage: $0 <url>" >&2; exit 1; }

}

start_timer() {

 {

 sleep $RUNTIME

 echo "...Timeout..."

 local nr_words=$(cat tmp/words.txt | wc -l)

 echo "The number of collected words: $nr_words"

 kill -9 $$ >/dev/null 2>&1

 } &

}

get_urls() {

 lynx "$1" -listonly -nonumbers -dump 2>/dev/null \

https://linux-cli.fs.al/
https://linux-cli.fs.al/scripting
https://linux-cli.fs.al/lesson15

 | grep -E '^https?://' \

| sed -e 's/#.*$//'

}

get_words() {

 w3m -dump "$1" \

 | sed -e "s/[^[:alnum:]' -]\+//g" \

 | tr -cs A-Za-z\' '\n' \

 | tr A-Z a-z \

 | sort -u

}

get_words_1() {

 wget -q -O- "$1" \

 | tr "\n" ' ' \

 | sed -e 's/<[^>]*>/ /g' \

 | sed -e 's/&[^;]*;/ /g' \

 | tr -cs A-Za-z\' '\n' \

 | tr A-Z a-z \

 | sort -u

}

main() {

 check "$@"

 start_timer

 mkdir -p tmp/

 rm -f tmp/{todo,done}.txt

 touch tmp/{todo,done,words}.txt

 echo "$1" > tmp/todo.txt

 local url

 while true; do

 # pop the top url from todo.txt

 url=$(head -1 tmp/todo.txt)

 sed -i tmp/todo.txt -e 1d

 # check whether we have processed already this url

 grep -qF "$url" tmp/done.txt && continue

echo "$url"

 # extract the links from it and append them to todo.txt

The file tmp/todo.txt contains a list of URLs, one per line, that are to be visited.

Initially we add to it the root URL that is given as an argument.

The file tmp/done.txt contains a list of URLs, one per line, that are already visited.

The file tmp/words.txt contains a list of words that have been collected so far, one

per line and sorted alphabetically.

There is an infinite loop in which we do these steps:

1. Get the top URL from tmp/todo.txt (and delete it from the file).

2. If not valid (does not start with http:// or https://), continue with the next

URL.

3. If valid, extract all the URLs on this page and append them to tmp/todo.txt , in

order to visit them later.

4. Get all the words from this page and merge them to tmp/words.txt .

5. Append this URL to tmp/done.txt , so that we don't process it again.

This infinite loop is never stopped, but there is a timer which stops the program

after running for a certain amount of seconds.

 get_urls "$url" >> tmp/todo.txt

 # extract all the words from this url

 get_words "$url" >> tmp/words.txt

 sort -u tmp/words.txt > tmp/words1.txt

 mv tmp/words1.txt tmp/words.txt

 # mark this url as processed

 echo "$url" >> tmp/done.txt

 done

}

call the main function

main "$@"

./crawler.sh

Let's increase the RUNTIME :

DOWNLOAD LESSON15/PART3.CAST

sudo apt install -y w3m

./crawler.sh

url=https://en.wikipedia.org/wiki/Linux

./crawler.sh $url

less tmp/words.txt

sed -i crawler.sh -e '/^RUNTIME=/ c RUNTIME=100'

rm -rf tmp/

./crawler.sh $url

cat tmp/words.txt | wc -l

less tmp/words.txt

https://linux-cli.fs.al/assets/files/part3-d1959cca594bec59a6bebf60cdf02d2e.cast

